1,503 research outputs found
Efficient discontinuous finite difference meshes for 3-D Laplace-Fourier domain seismic wavefield modelling in acoustic media with embedded boundaries
Simulation of acoustic wave propagation in the Laplace?Fourier (LF) domain, with a spatially uniform mesh, can be computationally demanding especially in areas with large velocity contrasts. To improve efficiency and convergence, we use 3-D second- and fourth-order velocitypressure finite difference (FD) discontinuous meshes (DM). Our DM algorithm can use any spatial discretization ratio between meshes. We evaluate direct and iterative parallel solvers for computational speed, memory requirements and convergence. Benchmarks in realistic 3-D models and topographies show more efficient and stable results for DM with direct solvers than uniform mesh results with iterative solvers
On the relationship between BL Lacertae objects and radio galaxies
We present deep radio images at 1.4 GHz of a large and complete sample of BL
Lacertae objects (BL Lacs) selected from the Deep X-ray Radio Blazar Survey
(DXRBS). We have observed 24 northern sources with the Very Large Array (VLA)
in both its A and C configurations and 15 southern sources with the Australia
Telescope Compact Array (ATCA) in its largest configuration. We find that in
the DXRBS, as in the 1-Jy survey, which has a radio flux limit roughly ten
times higher than the DXRBS, a considerable number (about a third) of BL Lacs
can be identified with the relativistically beamed counterparts of
Fanaroff-Riley type II (FR II) radio galaxies. We attribute the existence of FR
II-BL Lacs, which is not accounted for by current unified schemes, to an
inconsistency in our classification scheme for radio-loud active galactic
nuclei (AGN). Taking the extended radio power as a suitable measure of
intrinsic jet power, we find similar average values for low- (LBL) and
high-energy peaked BL Lacs (HBL), contrary to the predictions of the blazar
sequence.Comment: 21 pages, 10 figures, accepted by MNRA
International Space Station (ISS) Internal Active Thermal Control System (IATCS) New Biocide Selection, Qualification and Implementation
The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) is primarily responsible for the removal of heat loads from payload and system racks. The IATCS is a water based system which works in conjunction with the EATCS (External ATCS), an ammonia based system, which are interfaced through a heat exchanger to facilitate heat transfer. On-orbit issues associated with the aqueous coolant chemistry began to occur with unexpected increases in CO2 levels in the cabin. This caused an increase in total inorganic carbon (TIC), a reduction in coolant pH, increased corrosion, and precipitation of nickel phosphate. These chemical changes were also accompanied by the growth of heterotrophic bacteria that increased risk to the system and could potentially impact crew health and safety. Studies were conducted to select a biocide to control microbial growth in the system based on requirements for disinfection at low chemical concentration (effectiveness), solubility and stability, material compatibility, low toxicity to humans, compatibility with vehicle environmental control and life support systems (ECLSS), ease of application, rapid on-orbit measurement, and removal capability. Based on these requirements, ortho-phthalaldehyde (OPA), an aromatic dialdehyde compound, was selected for qualification testing. This paper presents the OPA qualification test results, development of hardware and methodology to safely apply OPA to the system, development of a means to remove OPA, development of a rapid colorimetric test for measurement of OPA, and the OPA on-orbit performance for controlling the growth of microorganisms in the ISS IATCS since November 3, 2007
The blazar-like radio structure of the TeV source IC310
Context. The radio galaxy IC310 in the Perseus cluster has recently been
detected in the gamma-ray regime at GeV and TeV energies. The TeV emission
shows time variability and an extraordinarily hard spectrum, even harder than
the spectrum of the similar nearby gamma-ray emitting radio galaxy M87.
Aims. High-resolution studies of the radio morphology help to constrain the
geometry of the jet on sub-pc scales and to find out where the high-energy
emission might come from.
Methods. We analyzed May 2011 VLBA data of IC310 at a wavelength of 3.6 cm,
revealing the parsec-scale radio structure of this source. We compared our
findings with more information available from contemporary single-dish flux
density measurements with the 100-m Effelsberg radio telescope.
Results. We have detected a one-sided core-jet structure with blazar-like,
beamed radio emission oriented along the same position angle as the kiloparsec
scale radio structure observed in the past by connected interferometers.
Doppler-boosting favoritism is consistent with an angle of theta < 38 degrees
between the jet axis and the line-of-sight, i.e., very likely within the
boundary dividing low-luminosity radio galaxies and BL Lac objects in unified
schemes.
Conclusions. The stability of the jet orientation from parsec to kiloparsec
scales in IC310 argues against its classification as a headtail radio galaxy;
i.e., there is no indication of an interaction with the intracluster medium
that would determine the direction of the tail. IC310 seems to represent a
low-luminosity FRI radio galaxy at a borderline angle to reveal its BL Lac-type
central engine.Comment: 5 pages, 3 figures (1 color); A&A, accepte
Chandra Observations of 3C Radio Sources with z<0.3: Nuclei, Diffuse Emission, Jets and Hotspots
We report on our Chandra Cycle 9 program to observe half of the 60
(unobserved by Chandra) 3C radio sources at z<0.3 for 8 ksec each. Here we give
the basic data: the X-ray intensity of the nuclei and any features associated
with radio structures such as hot spots and knots in jets. We have measured
fluxes in soft, medium and hard bands and are thus able to isolate sources with
significant intrinsic column density. For the stronger nuclei, we have applied
the standard spectral analysis which provides the best fit values of X-ray
spectral index and column density. We find evidence for intrinsic absorption
exceeding a column density of 10^{22} cm^{-2} for one third of our sources.Comment: 12 pages, 37 figures (the complete version of the paper with all
figures is available on line, see appendix for details), ApJ accepte
Polarization and photometric observations of the gamma-ray blazar PG 1553+113
We present the results of an observational photo-polarimetry campaign of the
blazar PG 1553+113 at optical wavelengths. The blazar was recently detected at
very high energies (> 100 GeV) by the H.E.S.S and MAGIC gamma-ray Cherenkov
telescopes.
Our high-temporal resolution data show significant variations in the linear
polarization percentage and position angle at inter-night time-scales, while at
shorter (intra-night) time-scales both parameters varied less significantly, if
at all. Changes in the polarization angle seem to be common in gamma-ray
emitting blazars. Simultaneous differential photometry (through the B and R
bands) shows no significant variability in the total optical flux. We provide B
and R magnitudes, along with a finding chart, for a set of field stars suitable
for differential photometry.Comment: 4 pages, 3 figures. To be published by Astronomy and Astrophysic
Cognitive Decay And Memory Recall During Long Duration Spaceflight
This dissertation aims to advance the efficacy of Long-Duration Space Flight (LDSF) pre-flight and in-flight training programs, acknowledging existing knowledge gaps in NASA\u27s methodologies. The research\u27s objective is to optimize the cognitive workload of LDSF crew members, enhance their neurocognitive functionality, and provide more meaningful work experiences, particularly for Mars missions.The study addresses identified shortcomings in current training and learning strategies and simulation-based training systems, focusing on areas requiring quantitative measures for astronaut proficiency and training effectiveness assessment. The project centers on understanding cognitive decay and memory loss under LDSF-related stressors, seeking to establish when such cognitive decline exceeds acceptable performance levels throughout mission phases. The research acknowledges the limitations of creating a near-orbit environment due to resource constraints and the need to develop engaging tasks for test subjects. Nevertheless, it underscores the potential impact on future space mission training and other high-risk professions. The study further explores astronaut training complexities, the challenges encountered in LDSF missions, and the cognitive processes involved in such demanding environments. The research employs various cognitive and memory testing events, integrating neuroimaging techniques to understand cognition\u27s neural mechanisms and memory. It also explores Rasmussen\u27s S-R-K behaviors and Brain Network Theory’s (BNT) potential for measuring forgetting, cognition, and predicting training needs. The multidisciplinary approach of the study reinforces the importance of integrating insights from cognitive psychology, behavior analysis, and brain connectivity research. Research experiments were conducted at the University of North Dakota\u27s Integrated Lunar Mars Analog Habitat (ILMAH), gathering data from selected subjects via cognitive neuroscience tools and Electroencephalography (EEG) recordings to evaluate neurocognitive performance. The data analysis aimed to assess brain network activations during mentally demanding activities and compare EEG power spectra across various frequencies, latencies, and scalp locations. Despite facing certain challenges, including inadequacies of the current adapter boards leading to analysis failure, the study provides crucial lessons for future research endeavors. It highlights the need for swift adaptation, continual process refinement, and innovative solutions, like the redesign of adapter boards for high radio frequency noise environments, for the collection of high-quality EEG data. In conclusion, while the research did not reveal statistically significant differences between the experimental and control groups, it furnished valuable insights and underscored the need to optimize astronaut performance, well-being, and mission success. The study contributes to the ongoing evolution of training methodologies, with implications for future space exploration endeavors
- …
