201 research outputs found

    Perceived intensity of somatosensory cortical electrical stimulation

    Get PDF
    Artificial sensations can be produced by direct brain stimulation of sensory areas through implanted microelectrodes, but the perceptual psychophysics of such artificial sensations are not well understood. Based on prior work in cortical stimulation, we hypothesized that perceived intensity of electrical stimulation may be explained by the population response of the neurons affected by the stimulus train. To explore this hypothesis, we modeled perceived intensity of a stimulation pulse train with a leaky neural integrator. We then conducted a series of two-alternative forced choice behavioral experiments in which we systematically tested the ability of rats to discriminate frequency, amplitude, and duration of electrical pulse trains delivered to the whisker barrel somatosensory cortex. We found that the model was able to predict the performance of the animals, supporting the notion that perceived intensity can be largely accounted for by spatiotemporal integration of the action potentials evoked by the stimulus train

    Treatment time and circadian genotype interact to influence radiotherapy side-effects. A prospective European validation study using the REQUITE cohort

    Get PDF
    Breast cancer; Circadian rhythm; RadiotherapyCáncer de mama; Ritmo circadiano; RadioterapiaCàncer de mama; Ritme circadià; RadioteràpiaBackground Circadian rhythm impacts broad biological processes, including response to cancer treatment. Evidence conflicts on whether treatment time affects risk of radiotherapy side-effects, likely because of differing time analyses and target tissues. We previously showed interactive effects of time and genotypes of circadian genes on late toxicity after breast radiotherapy and aimed to validate those results in a multi-centre cohort. Methods Clinical and genotype data from 1690 REQUITE breast cancer patients were used with erythema (acute; n=340) and breast atrophy (two years post-radiotherapy; n=514) as primary endpoints. Local datetimes per fraction were converted into solar times as predictors. Genetic chronotype markers were included in logistic regressions to identify primary endpoint predictors. Findings Significant predictors for erythema included BMI, radiation dose and PER3 genotype (OR 1.27(95%CI 1.03-1.56); P < 0.03). Effect of treatment time effect on acute toxicity was inconclusive, with no interaction between time and genotype. For late toxicity (breast atrophy), predictors included BMI, radiation dose, surgery type, treatment time and SNPs in CLOCK (OR 0.62 (95%CI 0.4-0.9); P < 0.01), PER3 (OR 0.65 (95%CI 0.44-0.97); P < 0.04) and RASD1 (OR 0.56 (95%CI 0.35-0.89); P < 0.02). There was a statistically significant interaction between time and genotypes of circadian rhythm genes (CLOCK OR 1.13 (95%CI 1.03-1.23), P < 0.01; PER3 OR 1.1 (95%CI 1.01-1.2), P < 0.04; RASD1 OR 1.15 (95%CI 1.04-1.28), P < 0.008), with peak time for toxicity determined by genotype. Interpretation Late atrophy can be mitigated by selecting optimal treatment time according to circadian genotypes (e.g. treat PER3 rs2087947C/C genotypes in mornings; T/T in afternoons). We predict triple-homozygous patients (14%) reduce chance of atrophy from 70% to 33% by treating in mornings as opposed to mid-afternoon. Future clinical trials could stratify patients treated at optimal times compared to those scheduled normally.EU-FP7

    Large-scale meta-genome-wide association study reveals common genetic factors linked to radiation-induced acute toxicities across cancer types

    Get PDF
    Meta-genome; Toxicities; CancerMetagenoma; Toxicidades; CáncerMetagenoma; Toxicitats; CàncerBackground This study was designed to identify common genetic susceptibility and shared genetic variants associated with acute radiation-induced toxicity across 4 cancer types (prostate, head and neck, breast, and lung). Methods A genome-wide association study meta-analysis was performed using 19 cohorts totaling 12 042 patients. Acute standardized total average toxicity (STATacute) was modelled using a generalized linear regression model for additive effect of genetic variants, adjusted for demographic and clinical covariates (rSTATacute). Linkage disequilibrium score regression estimated shared single-nucleotide variation (SNV—formerly SNP)–based heritability of rSTATacute in all patients and for each cancer type. Results Shared SNV-based heritability of STATacute among all cancer types was estimated at 10% (SE = 0.02) and was higher for prostate (17%, SE = 0.07), head and neck (27%, SE = 0.09), and breast (16%, SE = 0.09) cancers. We identified 130 suggestive associated SNVs with rSTATacute (5.0 × 10‒8 < P < 1.0 × 10‒5) across 25 genomic regions. rs142667902 showed the strongest association (effect allele A; effect size ‒0.17; P = 1.7 × 10‒7), which is located near DPPA4, encoding a protein involved in pluripotency in stem cells, which are essential for repair of radiation-induced tissue injury. Gene-set enrichment analysis identified ‘RNA splicing via endonucleolytic cleavage and ligation’ (P = 5.1 × 10‒6, P = .079 corrected) as the top gene set associated with rSTATacute among all patients. In silico gene expression analysis showed that the genes associated with rSTATacute were statistically significantly up-regulated in skin (not sun exposed P = .004 corrected; sun exposed P = .026 corrected). Conclusions There is shared SNV-based heritability for acute radiation-induced toxicity across and within individual cancer sites. Future meta–genome-wide association studies among large radiation therapy patient cohorts are worthwhile to identify the common causal variants for acute radiotoxicity across cancer types.E.N. was supported by a scholarship for a PhD from the University of Groningen, Groningen, The Netherlands. T.D. is funded as an Academic Clinical Fellow by the National Institute for Health Research, UK. D.J.T. is supported by a grant from The Taylor Family Foundation and Cancer Research UK [C19941/A30286]. M.L.K.C. is supported by the National Medical Research Council Singapore Clinician Scientist Award (NMRC/CSA-INV/0027/2018), National Research Foundation Proton Competitive Research Program (NRF-CRP17-2017-05), Ministry of Education Tier 3 Academic Research Fund (MOE2016-T3-1-004), the Duke-NUS Oncology Academic Program Goh Foundation Proton Research Programme, NCCS Cancer Fund, and the Kua Hong Pak Head and Neck Cancer Research Programme. G.C.B. is supported by Cancer research UK RadNet Cambridge [C17918/A28870]. RADIOGEN research was supported by Spanish Instituto de Salud Carlos III (ISCIII) funding, an initiative of the Spanish Ministry of Economy and Innovation partially supported by European Regional Development FEDER Funds (INT20/00071, INT15/00070, INT17/00133, INT16/00154; PI19/01424; PI16/00046; PI13/02030; PI10/00164); by AECC grant PRYES211091VEGA and through the Autonomous Government of Galicia (Consolidation and structuring program: IN607B). C.N.A. and L.M.H.S. received funding from the Danish Cancer Society (grant R231-A14074-B2537). T.R. was funded by a National Institutes of Health Research (NIHR) Clinical Lectureship (CL 2017-11-002) and is supported by the NIHR Leicester Biomedical Research Centre. This publication presents independent research funded by the NIHR. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. REQUITE received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement No. 601826. S.G.E. is supported by the government of Catalonia 2021SGR01112. L.D. was supported by the European Union Horizon 2020 research and innovation programs BRIDGES (grant No. 634935)

    Breast cancer management pathways during the COVID-19 pandemic: outcomes from the UK 'Alert Level 4' phase of the B-MaP-C study

    Get PDF
    BACKGROUND: The B-MaP-C study aimed to determine alterations to breast cancer (BC) management during the peak transmission period of the UK COVID-19 pandemic and the potential impact of these treatment decisions. METHODS: This was a national cohort study of patients with early BC undergoing multidisciplinary team (MDT)-guided treatment recommendations during the pandemic, designated 'standard' or 'COVID-altered', in the preoperative, operative and post-operative setting. FINDINGS: Of 3776 patients (from 64 UK units) in the study, 2246 (59%) had 'COVID-altered' management. 'Bridging' endocrine therapy was used (n = 951) where theatre capacity was reduced. There was increasing access to COVID-19 low-risk theatres during the study period (59%). In line with national guidance, immediate breast reconstruction was avoided (n = 299). Where adjuvant chemotherapy was omitted (n = 81), the median benefit was only 3% (IQR 2-9%) using 'NHS Predict'. There was the rapid adoption of new evidence-based hypofractionated radiotherapy (n = 781, from 46 units). Only 14 patients (1%) tested positive for SARS-CoV-2 during their treatment journey. CONCLUSIONS: The majority of 'COVID-altered' management decisions were largely in line with pre-COVID evidence-based guidelines, implying that breast cancer survival outcomes are unlikely to be negatively impacted by the pandemic. However, in this study, the potential impact of delays to BC presentation or diagnosis remains unknown

    FAHN/SPG35 : a narrow phenotypic spectrum across disease classifications

    Get PDF
    The endoplasmic reticulum enzyme fatty acid 2-hydroxylase (FA2H) plays a major role in the formation of 2-hydroxy glycosphingolipids, main components of myelin. FA2H deficiency in mice leads to severe central demyelination and axon loss. In humans it has been associated with phenotypes from the neurodegeneration with brain iron accumulation (fatty acid hydroxylase-associated neurodegeneration, FAHN), hereditary spastic paraplegia (HSP type SPG35) and leukodystrophy (leukodystrophy with spasticity and dystonia) spectrum. We performed an in-depth clinical and retrospective neurophysiological and imaging study in a cohort of 19 cases with biallelic FA2H mutations. FAHN/SPG35 manifests with early childhood onset predominantly lower limb spastic tetraparesis and truncal instability, dysarthria, dysphagia, cerebellar ataxia, and cognitive deficits, often accompanied by exotropia and movement disorders. The disease is rapidly progressive with loss of ambulation after a median of 7 years after disease onset and demonstrates little interindividual variability. The hair of FAHN/SPG35 patients shows a bristle-like appearance; scanning electron microscopy of patient hair shafts reveals deformities (longitudinal grooves) as well as plaque-like adhesions to the hair, likely caused by an abnormal sebum composition also described in a mouse model of FA2H deficiency. Characteristic imaging features of FAHN/SPG35 can be summarized by the WHAT' acronym: white matter changes, hypointensity of the globus pallidus, ponto-cerebellar atrophy, and thin corpus callosum. At least three of four imaging features are present in 85% of FA2H mutation carriers. Here, we report the first systematic, large cohort study in FAHN/SPG35 and determine the phenotypic spectrum, define the disease course and identify clinical and imaging biomarkers

    Bolstering Confidence in Obesity Prevention and Treatment Counseling for Resident and Community Pediatricians

    Get PDF
    Objective- To assess whether equipping resident pediatricians and community pediatricians with both training and practical tools improves their perceived confidence, ease, and frequency of obesity related counseling to patients. Methods- In 2005-2006, resident pediatricians (n = 49) and community pediatricians (n=18) received training regarding three evidence-based obesity prevention/treatment tools and responded to pre-and post-intervention questionnaires. We analyzed changes in reported mean confidence, ease, and frequency of dietary, physical activity, and weight status counseling. Results- Baseline scores of confidence, ease, and frequency of counseling were higher in community pediatricians than residents. Mean scores increased significantly in the combined group, among residents only, and trended towards improvement in the community pediatricians following the intervention. Means for "control" questions were unchanged. Conclusion- Training and tools for residents and community pediatricians improved their confidence, ease, and frequency of obesity-related counseling. Practice Implications- This study demonstrates that when feasible and appropriate tools and training were provided through a simple intervention, physicians gained confidence and ease and increased their counseling frequency. The results here suggest that widespread implementation of such educational interventions for community practitioners and practitioners in training could change the way physicians counsel patients to prevent the often frustrating problem of childhood obesity. Originally published Patient Education and Counseling, Vol. 73, No. 2, Nov 200

    Training in childhood obesity management in the United States: a survey of pediatric, internal medicine-pediatrics and family medicine residency program directors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information about the availability and effectiveness of childhood obesity training during residency is limited.</p> <p>Methods</p> <p>We surveyed residency program directors from pediatric, internal medicine-pediatrics (IM-Peds), and family medicine residency programs between September 2007 and January 2008 about childhood obesity training offered in their programs.</p> <p>Results</p> <p>The response rate was 42.2% (299/709) and ranged by specialty from 40.1% to 45.4%. Overall, 52.5% of respondents felt that childhood obesity training in residency was extremely important, and the majority of programs offered training in aspects of childhood obesity management including prevention (N = 240, 80.3%), diagnosis (N = 282, 94.3%), diagnosis of complications (N = 249, 83.3%), and treatment (N = 242, 80.9%). However, only 18.1% (N = 54) of programs had a formal childhood obesity curriculum with variability across specialties. Specifically, 35.5% of IM-Peds programs had a formal curriculum compared to only 22.6% of pediatric and 13.9% of family medicine programs (p < 0.01). Didactic instruction was the most commonly used training method but was rated as only somewhat effective by 67.9% of respondents using this method. The most frequently cited significant barrier to implementing childhood obesity training was competing curricular demands (58.5%).</p> <p>Conclusions</p> <p>While most residents receive training in aspects of childhood obesity management, deficits may exist in training quality with a minority of programs offering a formal childhood obesity curriculum. Given the high prevalence of childhood obesity, a greater emphasis should be placed on development and use of effective training strategies suitable for all specialties training physicians to care for children.</p

    Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort.

    Get PDF
    Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We used machine learning (ML) algorithms to develop and optimise a clinical prediction model for acute breast desquamation after whole breast external beam radiation therapy in the prospective multicenter REQUITE cohort study. Using demographic and treatment-related features (m = 122) from patients (n = 2058) at 26 centers, we trained 8 ML algorithms with 10-fold cross-validation in a 50:50 random-split data set with class stratification to predict acute breast desquamation. Based on performance in the validation data set, the logistic model tree, random forest, and naïve Bayes models were taken forward to cost-sensitive learning optimisation. One hundred and ninety-two patients experienced acute desquamation. Resampling and cost-sensitive learning optimisation facilitated an improvement in classification performance. Based on maximising sensitivity (true positives), the "hero" model was the cost-sensitive random forest algorithm with a false-negative: false-positive misclassification penalty of 90:1 containing m = 114 predictive features. Model sensitivity and specificity were 0.77 and 0.66, respectively, with an area under the curve of 0.77 in the validation cohort. ML algorithms with resampling and cost-sensitive learning generated clinically valid prediction models for acute desquamation using patient demographic and treatment features. Further external validation and inclusion of genomic markers in ML prediction models are worthwhile, to identify patients at increased risk of toxicity who may benefit from supportive intervention or even a change in treatment plan. [Abstract copyright: © 2022 The Authors.

    Hair Cell Bundles: Flexoelectric Motors of the Inner Ear

    Get PDF
    Microvilli (stereocilia) projecting from the apex of hair cells in the inner ear are actively motile structures that feed energy into the vibration of the inner ear and enhance sensitivity to sound. The biophysical mechanism underlying the hair bundle motor is unknown. In this study, we examined a membrane flexoelectric origin for active movements in stereocilia and conclude that it is likely to be an important contributor to mechanical power output by hair bundles. We formulated a realistic biophysical model of stereocilia incorporating stereocilia dimensions, the known flexoelectric coefficient of lipid membranes, mechanical compliance, and fluid drag. Electrical power enters the stereocilia through displacement sensitive ion channels and, due to the small diameter of stereocilia, is converted to useful mechanical power output by flexoelectricity. This motor augments molecular motors associated with the mechanosensitive apparatus itself that have been described previously. The model reveals stereocilia to be highly efficient and fast flexoelectric motors that capture the energy in the extracellular electro-chemical potential of the inner ear to generate mechanical power output. The power analysis provides an explanation for the correlation between stereocilia height and the tonotopic organization of hearing organs. Further, results suggest that flexoelectricity may be essential to the exquisite sensitivity and frequency selectivity of non-mammalian hearing organs at high auditory frequencies, and may contribute to the “cochlear amplifier” in mammals
    corecore