1,665 research outputs found
Low-energy monopole strength in exotic Nickel isotopes
Low-energy strength is predicted for the isoscalar monopole response of
neutron-rich Ni isotopes, in calculations performed using the microscopic
Skyrme HF+RPA and relativistic RHB+RQRPA models. Both models, although based on
different energy density functionals, predict the occurrence of pronounced
monopole states in the energy region between 10 MeV and 15 MeV, well separated
from the isoscalar GMR. The analysis of transition densities and corresponding
particle-hole configurations shows that these states represent almost pure
neutron single hole-particle excitations. Even though their location is not
modified with respect to the corresponding unperturbed states, their (Q)RPA
strength is considerably enhanced by the residual interaction. The theoretical
analysis predicts the gradual enhancement of low-energy monopole strength with
neutron excess.Comment: 4 pages, 6 figures, submitted to Physical Review
Non-Newtonian Mechanics
The classical motion of spinning particles can be described without employing
Grassmann variables or Clifford algebras, but simply by generalizing the usual
spinless theory. We only assume the invariance with respect to the Poincare'
group; and only requiring the conservation of the linear and angular momenta we
derive the zitterbewegung: namely the decomposition of the 4-velocity in the
newtonian constant term p/m and in a non-newtonian time-oscillating spacelike
term. Consequently, free classical particles do not obey, in general, the
Principle of Inertia. Superluminal motions are also allowed, without violating
Special Relativity, provided that the energy-momentum moves along the worldline
of the center-of-mass. Moreover, a non-linear, non-constant relation holds
between the time durations measured in different reference frames. Newtonian
Mechanics is re-obtained as a particular case of the present theory: namely for
spinless systems with no zitterbewegung. Introducing a Lagrangian containing
also derivatives of the 4-velocity we get a new equation of the motion,
actually a generalization of the Newton Law a=F/m. Requiring the rotational
symmetry and the reparametrization invariance we derive the classical spin
vector and the conserved scalar Hamiltonian, respectively. We derive also the
classical Dirac spin and analyze the general solution of the Eulero-Lagrange
equation for Dirac particles. The interesting case of spinning systems with
zero intrinsic angular momentum is also studied.Comment: LaTeX; 27 page
Outsourcing as a category of the evolutionary economics theory
Basic definitions and types of Outsourcing were identified. It is suggested to consider Outsourcing as a special institution of the transnational capitalism economics
Urban Air Mobility Network and Vehicle Type - Modeling and Assessment
This paper describes exploratory modeling of an on-demand urban air mobility (UAM) network and sizing of vehicles to operate within that network. UAM seeks to improve the movement of goods and people around a metropolitan area by utilizing the airspace for transport. Aircraft sizing and overall network performance results are presented that include comparisons of battery-electric and various hybrid-electric vehicles that are fueled with diesel, jet fuel, compressed natural gas, and liquefied natural gas (LNG). Hybrid-electric propulsion systems consisting of internal combustion engine-generators, turbine-generators, and solid oxide fuel cells are explored. Ultimately, the "performance" of the UAM network over a day for each of the different vehicle types, propulsion systems, and stored energy sources is described in four parameters: 1) the average cost per seat-kilometer, which considers the costs of the energy/fuel, vehicle acquisition, insurance, maintenance, pilot, and battery replacement costs, 2) carbon dioxide emission rates associated with vehicle operations, 3) the average passenger wait time, and 4) the average load factor, i.e., the total number of seats filled with paying passengers divided by the total number of available seats. Results indicate that the "dispatch model," which determines when and where aircraft are flown around the UAM network, is critical in determining the overall network performance. This is due to the often-conflicting desires to allow passengers to depart with minimal wait time while still maintaining a high load factor to reduce operating costs. Additionally, regardless of the dispatch model, hybrid-electric aircraft powered by internal combustion engines fueled with diesel or LNG are consistently the lowest cost per seat-kilometer. Battery-electric and future technology LNG/solid oxide fuel cell aircraft produce the lowest emissions (assuming the California grid) with LNG-fueled internal combustion engine-powered hybrids producing only slightly more carbon dioxide
Discrete nuclear structures in actively growing neuroblastoma cells are revealed by antibodies raised against phosphorylated neurofilament proteins
BACKGROUND: Nuclear objects that have in common the property of being recognized by monoclonal antibodies specific for phosphoprotein epitopes and cytoplasmic intermediate filaments (in particular, SMI-31 and RT-97) have been reported in glial and neuronal cells, in situ and in vitro. Since neurofilament and glial filaments are generally considered to be restricted to the cytoplasm, we were interested in exploring the identity of the structures labeled in the nucleus as well as the conditions under which they could be found there. RESULTS: Using confocal microscopy and western analysis techniques, we determined 1) the immunolabeled structures are truly within the nucleus; 2) the phosphoepitope labeled by SMI-31 and RT-97 is not specific to neurofilaments (NFs) and it can be identified on other intermediate filament proteins (IFs) in other cell types; and 3) there is a close relationship between DNA synthesis and the amount of nuclear staining by these antibodies thought to be specific for cytoplasmic proteins. Searches of protein data bases for putative phosphorylation motifs revealed that lamins, NF-H, and GFAP each contain a single tyrosine phosphorylation motif with nearly identical amino acid sequence. CONCLUSION: We therefore suggest that this sequence may be the epitope recognized by SMI-31 and RT-97 mABs, and that the nuclear structures previously reported and shown here are likely phosphorylated lamin intermediate filaments, while the cytoplasmic labeling revealed by the same mABs indicates phosphorylated NFs in neurons or GFAP in glia
Measurement of the branching ratio for beta-delayed alpha decay of 16N
While the 12C(a,g)16O reaction plays a central role in nuclear astrophysics,
the cross section at energies relevant to hydrostatic helium burning is too
small to be directly measured in the laboratory. The beta-delayed alpha
spectrum of 16N can be used to constrain the extrapolation of the E1 component
of the S-factor; however, with this approach the resulting S-factor becomes
strongly correlated with the assumed beta-alpha branching ratio. We have
remeasured the beta-alpha branching ratio by implanting 16N ions in a segmented
Si detector and counting the number of beta-alpha decays relative to the number
of implantations. Our result, 1.49(5)e-5, represents a 24% increase compared to
the accepted value and implies an increase of 14% in the extrapolated S-factor
Collective modes for an array of magnetic dots in the vortex state
The dispersion relations for collective magnon modes for square-planar arrays
of vortex-state magnetic dots, having closure magnetic flux are calculated. The
array dots have no direct contact between each other, and the sole source of
their interaction is the magnetic dipolar interaction. The magnon formalism
using Bose operators along with translational symmetry of the lattice, with the
knowledge of mode structure for the isolated dot, allows the diagonalization of
the system Hamiltonian giving the dispersion relation. Arrays of vortex-state
dots show a large variety of collective mode properties, such as positive or
negative dispersion for different modes. For their description, not only
dipolar interaction of effective magnetic dipoles, but non-dipolar terms common
to higher multipole interaction in classical electrodynamics can be important.
The dispersion relation is shown to be non-analytic as the value of the
wavevector approaches zero for all dipolar active modes of the single dot. For
vortex-state dots the interdot interaction is not weak, because, the dynamical
part (in contrast to the static magnetization of the vortex state) dot does not
contain the small parameter, the ratio of vortex core size to the dot radius.
This interaction can lead to qualitative effects like the formation of modes of
angular standing waves instead of modes with definite azimuthal number known
for the insolated vortex state dot
- …