119 research outputs found

    Doping-Induced Spectral Shifts in Two Dimensional Metal Oxides

    Full text link
    Doping of strongly layered ionic oxides is an established paradigm for creating novel electronic behavior. This is nowhere more apparent than in superconductivity, where doping gives rise to high temperature superconductivity in cuprates (hole-doped) and to surprisingly high Tc in HfNCl (Tc=25.5K, electron-doped). First principles calculations of hole-doping of the layered delafossite CuAlO2 reveal unexpectedly large doping-induced shifts in spectral density, strongly in opposition to the rigid band picture that is widely used as an accepted guideline. These spectral shifts, of similar origin as the charge transfer used to produce negative electron affinity surfaces and adjust Schottky barrier heights, drastically alter the character of the Fermi level carriers, leading in this material to an O-Cu-O molecule-based carrier (or polaron, at low doping) rather than a nearly pure-Cu hole as in a rigid band picture. First principles linear response electron-phonon coupling (EPC) calculations reveal, as a consequence, net weak EPC and no superconductivity rather than the high Tc obtained previously using rigid band expectations. These specifically two-dimensional dipole-layer driven spectral shifts provides new insights into materials design in layered materials foe functionalities besides superconductivity.Comment: 6 pages, 8 figures,1 tabl

    Orbital order, stacking defects and spin-fluctuations in the pp-electron molecular solid RbO2_2

    Full text link
    We examine magnon and orbiton behavior in localized O2_2 anti-bonding molecular π∗\pi^* orbitals using an effective Kugel-Khomskii Hamiltonian derived from a two band Hubbard model with hopping parameters taken from {\em ab initio} density functional calculations. The considerable difference between intraband and interband hoppings leads to a strong coupling between the spin wave dispersion and the orbital ground state, providing a straightforward way of experimentally determining the orbital ground state from the measured magnon dispersion. The near degeneracy of different orbital ordered states leads to stacking defects which further modulate spin-fluctuation spectra. Proliferation of orbital domains disrupts long-range magnetic order, thus causing a significant reduction in the observed N\'eel temperature.Comment: 5 pages, 2 figure

    Effect of Local Electron-Electron Correlation in Hydrogen-like Impurities in Ge

    Get PDF
    We have studied the electronic and local magnetic structure of the hydrogen interstitial impurity at the tetrahedral site in diamond-structure Ge, using an empirical tight binding + dynamical mean field theory approach because within the local density approximation (LDA) Ge has no gap. We first establish that within LDA the 1s spectral density bifurcates due to entanglement with the four neighboring sp3 antibonding orbitals, providing an unanticipated richness of behavior in determining under what conditions a local moment hyperdeep donor or Anderson impurity will result, or on the other hand a gap state might appear. Using a supercell approach, we show that the spectrum, the occupation, and the local moment of the impurity state displays a strong dependence on the strength of the local on-site Coulomb interaction U, the H-Ge hopping amplitude, the depth of the bare 1s energy level epsilon_H, and we address to some extent the impurity concentration dependence. In the isolated impurity, strong interaction regime a local moment emerges over most of the parameter ranges indicating magnetic activity, and spectral density structure very near (or in) the gap suggests possible electrical activity in this regime.Comment: 9 pages, 5 figure

    NaAlSi: a self-doped semimetallic superconductor with free electrons and covalent holes

    Full text link
    The layered ternary sp conductor NaAlSi, possessing the iron-pnictide "111" crystal structure, superconducts at 7 K. Using density functional methods, we show that this compound is an intrinsic (self-doped) low-carrier-density semimetal with a number of unusual features. Covalent Al-Si valence bands provide the holes, and free-electron-like Al 3s bands, which propagate in the channel between the neighboring Si layers, dip just below the Fermi level to create the electron carriers. The Fermi level (and therefore the superconducting carriers) lies in a narrow and sharp peak within a pseudogap in the density of states. The small peak arises from valence bands which are nearly of pure Si, quasi-two-dimensional, flat, and coupled to Al conduction bands. Isostructural NaAlGe, which is not superconducting above 1.6 K, has almost exactly the same band structure except for one missing piece of small Fermi surface. Certain deformation potentials induced by Si and Na displacements along the c-axis are calculated and discussed. It seems likely that the mechanism of pairing is related to that of several other lightly doped two-dimensional nonmagnetic semiconductors (TiNCl, ZrNCl, HfNCl), which is not well understood but apparently not of phonon origin.Comment: 9 pages, 7 figures, 1 tabl

    First-Principles Study of Electronic and Vibrational Properties of BaHfN2_2

    Full text link
    The transition metal nitride BaHfN2_2, which consists of weakly bonded neutral slabs of closed shell ions, has structural and chemical similarities to other layered nitrides which have impressive superconducting Tc_c when electron doped: Ax_xHfNCl, Ax_xZrNCl, Ax_xTiNCl, with Tc=25.5T_c= 25.5, 15.215.2 and 16.516.5 K, respectively for appropriate donor (A) concentrations xx. These similarities suggest the possibility of BaHfN2_2 being another relatively high Tc_c nitride upon doping, with effects of structure and the role of specific transition metal ions yet to be understood. We report first-principles electronic structure calculations for stoichiometric BaHfN2_2 using density functional theory with plane-wave basis sets and separable dual-space Gaussian pseudopotentials. An indirect band gap of 0.8 eV was obtained and the lowest conduction band is primarily of Hf 5dxyd_{xy} character, similar to β\beta-ZrNCl and α\alpha-TiNCl. The two N sites, one in the Hf layer and another one in the Ba layer, were found to have very anisotropic Born effective charges (BEC):deviations from the formal charge (-3) are opposite for the two sites, and opposite for the two orientations (in-plane, out of plane). LO-TO splittings and comparison of BECs and dielectric constant tensors to those of related compounds are discussed, and the effect of electron doping on the zone-center phonons is reported.Comment: 11 pages, 5 figure

    First Principles Study of the Electronic and Vibrational Properties of LiNbO2

    Full text link
    In the layered transition metal oxide LiNbO2_2 the Nb3+^{3+} (4d24d^2) ion is trigonal-prismatically coordinated with O ions, with the resulting crystal field leading to a single band system for low energy properties. A tight-binding representation shows that intraplanar second neighbor hopping t2=100t_2 = 100 meV dominates the first neighbor interaction (t1=64t_1 = 64 meV). The first and third neighbor couplings are strongly modified by oxygen displacements of the symmetric Raman-active vibrational mode, and electron-phonon coupling to this motion may provide the coupling mechanism for superconductivity in Li-deficient samples (where Tc=5T_c = 5 K). We calculate all zone-center phonon modes, identify infrared (IR) and Raman active modes, and report LO-TO splitting of the IR modes. The Born effective charges for the metal ions are found to have considerable anisotropy reflecting the degree to which the ions participate in interlayer coupling and covalent bonding. Insight into the microscopic origin of the valence band density, composed of Nb dz2d_{z^2} states with some mixing of O 2p2p states, is obtained from examining Wannier functions for these bands.Comment: 12 pages, 7 figures; Updated with reviewer comments; Updated reference

    The crucial importance of the t2gt_{2g}--ege_g hybridization in transition metal oxides

    Full text link
    We studied the influence of the trigonal distortion of the regular octahedron along the (111) direction, found in the CoO2\rm CoO_2 layers. Under such a distortion the t2gt_{2g} orbitals split into one a1ga_{1g} and two degenerated eg′e_g^\prime orbitals. We focused on the relative order of these orbitals. Using quantum chemical calculations of embedded clusters at different levels of theory, we analyzed the influence of the different effects not taken into account in the crystalline field theory; that is metal-ligand hybridization, long-range crystalline field, screening effects and orbital relaxation. We found that none of them are responsible for the relative order of the t2gt_{2g} orbitals. In fact, the trigonal distortion allows a mixing of the t2gt_{2g} and ege_g orbitals of the metallic atom. This hybridization is at the origin of the a1ga_{1g}--eg′e_g^\prime relative order and of the incorrect prediction of the crystalline field theory

    Electronic Structure Calculation by First Principles for Strongly Correlated Electron Systems

    Full text link
    Recent trends of ab initio studies and progress in methodologies for electronic structure calculations of strongly correlated electron systems are discussed. The interest for developing efficient methods is motivated by recent discoveries and characterizations of strongly correlated electron materials and by requirements for understanding mechanisms of intriguing phenomena beyond a single-particle picture. A three-stage scheme is developed as renormalized multi-scale solvers (RMS) utilizing the hierarchical electronic structure in the energy space. It provides us with an ab initio downfolding of the global band structure into low-energy effective models followed by low-energy solvers for the models. The RMS method is illustrated with examples of several materials. In particular, we overview cases such as dynamics of semiconductors, transition metals and its compounds including iron-based superconductors and perovskite oxides, as well as organic conductors of kappa-ET type.Comment: 44 pages including 38 figures, to appear in J. Phys. Soc. Jpn. as an invited review pape

    "They brought you back to the fact you're not the same": Sense of self after traumatic brain injury

    Get PDF
    This paper considers contexts following traumatic brain injury, exploring what may be at stake when dominant expectations predict a ‘lost’ or ‘broken’ self. I explore stories co-constructed with one young man and his mother to illustrate their personal and intersubjective understandings of identity, at times conflicting, within family interactions and when encountering normative practices of neurorehabilitation clinicians. The ower relations portrayed confront this man’s narrative attempts to align his present and pre-injury self, including standard assessments delineating change, administered by healthcare professionals. I consider a need for greater attention to interaction-generated disruption to sense of self, wthin contemporary conceptualisations of ‘person-centred care’
    • …
    corecore