10,094 research outputs found
Nonlinearity and pixel shifting effects in HXRG infrared detectors
We study the nonlinearity (NL) in the conversion from charge to voltage in
infrared detectors (HXRG) for use in precision astronomy. We present laboratory
measurements of the NL function of a H2RG detector and discuss the accuracy to
which it would need to be calibrated in future space missions to perform
cosmological measurements through the weak gravitational lensing technique. In
addition, we present an analysis of archival data from the infrared H1RG
detector of the Wide Field Camera 3 in the Hubble Space Telescope that provides
evidence consistent with the existence of a sensor effect analogous to the
brighter-fatter effect found in Charge-Coupled Devices. We propose a model in
which this effect could be understood as shifts in the effective pixel
boundaries, and discuss prospects of laboratory measurements to fully
characterize this effect.Comment: Accepted for publication in the Journal of Instrumentation (JINST).
Part of "Precision Astronomy with Fully Depleted CCDs" (Dec 1-2, 2016),
Brookhaven National Laboratory, Upton, NY, US
Nighttime observations of thunderstorm electrical activity from a high altitude airplane
Nocturnal thunderstorms were observed from above and features of cloud structure and lightning which are not generally visible from the ground are discussed. Most, lightning activity seems to be associated with clouds with strong convective cauliflower tops. In both of the storms lightning channels were visible in the clear air above the cloud. It is shown that substances produced by thunderstorm electrical discharges can be introduced directly into the stratosphere. The cause and nature of the discharges above the cloud are not clear. They may be produced by accumulations of space charge in the clear air above the cloud. The discharges may arise solely because of the intense electric fields produced by charges within the cloud. In the latter case the ions introduced by these discharges will increase the electrical conductivity of the air above the cloud and increase the conduction current that flows from the cloud to the electrosphere. More quantitative data at higher resolution may show significant spectral differences between cloud to ground and intracloud strokes. It is shown that electric field change data taken with an electric field change meter mounted in an airplane provide data on lightning discharges from above that are quite similar to those obtained from the ground in the past. The optical signals from dart leaders, from return strokes, and from continuing currents are recognizable, can be used to provide information on the fine structure of lightning, and can be used to distinguish between cloud to ground and intracloud flashes
Solar Seismology from Space. a Conference at Snowmass, Colorado
The quality of the ground based observing environment suffers from several degrading factors: diurnal interruptions and thermal variations, atmospheric seeing and transparency fluctuations and adverse weather interruptions are among the chief difficulties. The limited fraction of the solar surface observable from only one vantage point is also a potential limitation to the quality of the data available without going to space. Primary conference goals were to discuss in depth the scientific return from current observations and analyses of solar oscillations, to discuss the instrumental and site requirements for realizing the full potential of the seismic analysis method, and to help bring new workers into the field by collecting and summarizing the key background theory. At the conclusion of the conference there was a clear consensus that ground based observation would not be able to provide data of the quality required to permit a substantial analysis of the solar convection zone dynamics or to permit a full deduction of the solar interior structure
Histidine nutrition and genotype affect cataract development in Atlantic salmon, Salmo salar L.
The aim of this study was to investigate effects of dietary levels of histidine (His) and iron (Fe) on cataract development in two strains of Atlantic salmon monitored through parr-smolt transformation. Three experimental diets were fed: (i) a control diet (CD) with 110 mg kg-1 Fe and 11.7 g kg-1 His; (ii) CD supplemented with crystalline His to a level of 18 g kg-1 (HD); and (iii) HD with added iron up to 220 mg kg-1 (HID). A cross-over design, with two feeding periods was used. A 6-week freshwater (FW) period was followed by a 20-week period, of which the first three were in FW and the following 17 weeks in sea water (SW). Fish were sampled for weighing, cataract assessment and tissue analysis at five time points. Cataracts developed in all groups in SW, but scores were lower in those fed high His diets (P < 0.05). This effect was most pronounced when HD or HID was given in SW, but was also observed when these diets were given in FW only. Histidine supplementation had a positive effect on growth performance and feed conversion ratio (P < 0.05), whereas this did not occur when iron was added. Groups fed HD or HID had higher lens levels of His and N-acetyl histidine (NAH), the latter showing a marked increase post-smoltification (P < 0.05). The HD or HID groups also showed higher muscle concentrations of the His dipeptide anserine (P < 0.05). There was a strong genetic influence on cataract development in the CD groups (P < 0.001), not associated with tissue levels of His or NAH. The role of His and His-related compounds in cataractogenesis is discussed in relation to tissue buffering, osmoregulation and antioxidation
The 1984 solar oscillation program of the Mount Wilson 60-foot tower
The instrumentation, data, and preliminary results from the summer, 1984, solar oscillation observing program which was carried out using the 60-foot tower telescope of the Mt. Wilson Observatory are described. This program was carried out with a dedicated solar oscillation observing system and obtained full-disk Dopplergrams every 40 seconds for up to 11 hours per day. Between June and September, 1984, observations were obtained with a Na magneto-optical filter on 90 different days. The data analysis has progressed to the point that spherical harmonic filter functions were employed to generate a few one-dimensional power spectra from a single day's observations
Recommended from our members
Development of a Rooftop Collaborative Experimental Space through Experiential Learning Projects
The Solar, Water, Energy, and Thermal Laboratory
(SWEAT Lab) is a rooftop experimental space at the
University of Texas at Austin built by graduate and
undergraduate students in the Cockrell School of
Engineering. The project was funded by the Texas State
Energy Conservation Office and the University’s Green
Fee Grant, a competitive grant program funded by UT
Austin tuition fees to support sustainability-related projects
and initiatives on campus. The SWEAT Lab is an on-going
experiential learning facility that enables engineering
education by deploying energy and water-related projects.
To date, the lab contains a full weather station tracking
weather data, a rainwater harvesting system and rooftop
garden.
This project presented many opportunities for students to
learn first hand about unique engineering challenges. The
lab is located on the roof of the 10 story Engineering
Teaching Center (ETC) building, so students had to design
and build systems with constraints such as weight
limitations and wind resistance. Students also gained
experience working with building facilities and
management for structural additions, power, and internet
connection for instruments.
With the Bird’s eye view of UT Austin campus, this unique
laboratory offers a new perspective and dimension to
applied student research projects at UT Austin.Cockrell School of Engineerin
Evaluation of Ice and Frost Accumulation on the Space Shuttle External Tank
Ice/Frost formation on the Space Shuttle cryogenic propellant tanks presents a different problem from that of past launch vehicles. Lift off weight addition has been the primary concern on past launch vehicles. The primary ice/frost concern on the Shuttle vehicle is damage to the Orbiter Thermal Protection System due to ice/frost impact. The approach used to arrive at a solution to this unique Shuttle problem is presented. The launch vehicle configuration selected and its limitations are described, along with contingency ground support equipment
- …