3,070 research outputs found

    A Canonical Approach to the Quantization of the Damped Harmonic Oscillator

    Full text link
    We provide a new canonical approach for studying the quantum mechanical damped harmonic oscillator based on the doubling of degrees of freedom approach. Explicit expressions for Lagrangians of the elementary modes of the problem, characterising both forward and backward time propagations are given. A Hamiltonian analysis, showing the equivalence with the Lagrangian approach, is also done. Based on this Hamiltonian analysis, the quantization of the model is discussed.Comment: Revtex, 6 pages, considerably expanded with modified title and refs.; To appear in J.Phys.

    Angioarchitectural evolution of clival dural arteriovenous fistulas in two patients.

    Get PDF
    Dural arteriovenous fistulas (dAVFs) may present in a variety of ways, including as carotid-cavernous sinus fistulas. The ophthalmologic sequelae of carotid-cavernous sinus fistulas are known and recognizable, but less commonly seen is the rare clival fistula. Clival dAVFs may have a variety of potential anatomical configurations but are defined by the involvement of the venous plexus just overlying the bony clivus. Here we present two cases of clival dAVFs that most likely evolved from carotid-cavernous sinus fistulas

    Gauge Symmetries on θ\theta-Deformed Spaces

    Full text link
    A Hamiltonian formulation of gauge symmetries on noncommutative (θ\theta deformed) spaces is discussed. Both cases- star deformed gauge transformation with normal coproduct and undeformed gauge transformation with twisted coproduct- are considered. While the structure of the gauge generator is identical in either case, there is a difference in the computation of the graded Poisson brackets that yield the gauge transformations. Our analysis provides a novel interpretation of the twisted coproduct for gauge transformations.Comment: LaTex, 20 pages, no figure

    Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    Get PDF
    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments

    Stretching Instability of Helical Spring

    Full text link
    We show that when a gradually increasing tensile force is applied to the ends of a helical spring with sufficiently large ratios of radius to pitch and twist to bending rigidity, the end-to-end distance undergoes a sequence of discontinuous stretching transitions. Subsequent decrease of the force leads to step-like contraction and hysteresis is observed. For finite helices, the number of these transitions increases with the number of helical turns but only one stretching and one contraction instability survive in the limit of an infinite helix. We calculate the critical line that separates the region of parameters in which the deformation is continuous from that in which stretching instabilities occur, and propose experimental tests of our predictions.Comment: 5 pages, 4 figure

    Wigner's little group, gauge transformations and dimensional descent

    Get PDF
    We propose a technique called dimensional descent to show that Wigner's little group for massless particles, which acts as a generator of gauge transformation for usual Maxwell theory, has an identical role even for topologically massive gauge theories. The examples of BFB\wedge F theory and Maxwell-Chern-Simons theory are analyzed in details.Comment: LaTex, revised version shortened to 9 pages; To appear in Jour.Phys.

    On the completeness of quantum computation models

    Full text link
    The notion of computability is stable (i.e. independent of the choice of an indexing) over infinite-dimensional vector spaces provided they have a finite "tensorial dimension". Such vector spaces with a finite tensorial dimension permit to define an absolute notion of completeness for quantum computation models and give a precise meaning to the Church-Turing thesis in the framework of quantum theory. (Extra keywords: quantum programming languages, denotational semantics, universality.)Comment: 15 pages, LaTe

    Supersymmetric Pair Correlation Function of Wilson Loops

    Get PDF
    We give a path integral derivation of the annulus diagram in a supersymmetric theory of open and closed strings with Dbranes. We compute the pair correlation function of Wilson loops in the generic weakly coupled supersymmetric flat spacetime background with Dbranes. We obtain a -u^4/r^9 potential between heavy nonrelativistic sources in a supersymmetric gauge theory at short distances.Comment: 18 pages, Revte
    corecore