1,424 research outputs found

    Scalable Task-Based Algorithm for Multiplication of Block-Rank-Sparse Matrices

    Full text link
    A task-based formulation of Scalable Universal Matrix Multiplication Algorithm (SUMMA), a popular algorithm for matrix multiplication (MM), is applied to the multiplication of hierarchy-free, rank-structured matrices that appear in the domain of quantum chemistry (QC). The novel features of our formulation are: (1) concurrent scheduling of multiple SUMMA iterations, and (2) fine-grained task-based composition. These features make it tolerant of the load imbalance due to the irregular matrix structure and eliminate all artifactual sources of global synchronization.Scalability of iterative computation of square-root inverse of block-rank-sparse QC matrices is demonstrated; for full-rank (dense) matrices the performance of our SUMMA formulation usually exceeds that of the state-of-the-art dense MM implementations (ScaLAPACK and Cyclops Tensor Framework).Comment: 8 pages, 6 figures, accepted to IA3 2015. arXiv admin note: text overlap with arXiv:1504.0504

    A photometricity and extinction monitor at the Apache Point Observatory

    Full text link
    An unsupervised software ``robot'' that automatically and robustly reduces and analyzes CCD observations of photometric standard stars is described. The robot measures extinction coefficients and other photometric parameters in real time and, more carefully, on the next day. It also reduces and analyzes data from an all-sky 10ÎĽm10 \mu m camera to detect clouds; photometric data taken during cloudy periods are automatically rejected. The robot reports its findings back to observers and data analysts via the World-Wide Web. It can be used to assess photometricity, and to build data on site conditions. The robot's automated and uniform site monitoring represents a minimum standard for any observing site with queue scheduling, a public data archive, or likely participation in any future National Virtual Observatory.Comment: accepted for publication in A

    Formation and evolution of density singularities in hydrodynamics of inelastic gases

    Full text link
    We use ideal hydrodynamics to investigate clustering in a gas of inelastically colliding spheres. The hydrodynamic equations exhibit a new type of finite-time density blowup, where the gas pressure remains finite. The density blowups signal formation of close-packed clusters. The blowup dynamics are universal and describable by exact analytic solutions continuable beyond the blowup time. These solutions show that dilute hydrodynamic equations yield a powerful effective description of a granular gas flow with close-packed clusters, described as finite-mass point-like singularities of the density. This description is similar in spirit to the description of shocks in ordinary ideal gas dynamics.Comment: 4 pages, 3 figures, final versio

    The Knudsen temperature jump and the Navier-Stokes hydrodynamics of granular gases driven by thermal walls

    Full text link
    Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic modeling of dilute granular gases of monodisperse particles that collide nearly elastically. The Knudsen temperature jump manifests itself as an additional term, proportional to the temperature gradient, in the boundary condition for the temperature. Up to a numerical pre-factor of order unity, this term is known from kinetic theory of elastic gases. We determine the previously unknown numerical pre-factor by measuring, in a series of molecular dynamics (MD) simulations, steady-state temperature profiles of a gas of elastically colliding hard disks, confined between two thermal walls kept at different temperatures, and comparing the results with the predictions of a hydrodynamic calculation employing the modified boundary condition. The modified boundary condition is then applied, without any adjustable parameters, to a hydrodynamic calculation of the temperature profile of a gas of inelastic hard disks driven by a thermal wall. We find the hydrodynamic prediction to be in very good agreement with MD simulations of the same system. The results of this work pave the way to a more accurate hydrodynamic modeling of driven granular gases.Comment: 7 pages, 3 figure

    Close-packed floating clusters: granular hydrodynamics beyond the freezing point?

    Full text link
    Monodisperse granular flows often develop regions with hexagonal close packing of particles. We investigate this effect in a system of inelastic hard spheres driven from below by a "thermal" plate. Molecular dynamics simulations show, in a wide range of parameters, a close-packed cluster supported by a low-density region. Surprisingly, the steady-state density profile, including the close-packed cluster part, is well described by a variant of Navier-Stokes granular hydrodynamics (NSGH). We suggest a simple explanation for the success of NSGH beyond the freezing point.Comment: 4 pages, 5 figures. To appear in Phys. Rev. Let

    Anomalous Dynamic Scaling in Locally-Conserved Coarsening of Fractal Clusters

    Full text link
    We report two-dimensional phase-field simulations of locally-conserved coarsening dynamics of random fractal clusters with fractal dimension D=1.7 and 1.5. The correlation function, cluster perimeter and solute mass are measured as functions of time. Analyzing the correlation function dynamics, we identify two different time-dependent length scales that exhibit power laws in time. The exponents of these power laws are independent of D, one of them is apparently the classic exponent 1/3. The solute mass versus time exhibits dynamic scaling with a D-dependent exponent, in agreement with a simple scaling theory.Comment: 5 pages, 4 figure

    Association of the I1307K APC mutation with hereditary and sporadic breast/ovarian cancer: more questions than answers

    Get PDF
    The frequency of the APC I1307K mutation and its association with disease pattern was examined in 996 Ashkenazi women consisting of individuals with either sporadic (n = 382) or hereditary (n = 143) breast and/or ovarian cancer; asymptomatic BRCA1/2 mutation carriers (185delAG, 5382insC and 6174delT) (n = 53) and healthy controls (n = 418). The I1307K allele was equally distributed among women with sporadic (17/382; 4.6%) and inherited (10/143; 7%) breast and/or ovarian cancer irrespective of their being diagnosed before or after 42 years of age and among asymptomatic (7/53; 13.2%) and cancer manifesting BRCA1/2 carriers (10/143; 7%). Taken together, the prevalence of the I1307K allele was significantly higher in BRCA1/2 carriers compared to non-BRCA1/2 carriers (17/196; 8.7% and 40/800, 5%; respectively). The high prevalence of the I1307K allele among BRCA1/2 carriers is not associated with increased cancer risk but seems to be genetically connected because of Jewish ancestry. © 2000 Cancer Research Campaig

    Onset of thermal convection in a horizontal layer of granular gas

    Full text link
    The Navier-Stokes granular hydrodynamics is employed for determining the threshold of thermal convection in an infinite horizontal layer of granular gas. The dependence of the convection threshold, in terms of the inelasticity of particle collisions, on the Froude and Knudsen numbers is found. A simple necessary condition for convection is formulated in terms of the Schwarzschild's criterion, well-known in thermal convection of (compressible) classical fluids. The morphology of convection cells at the onset is determined. At large Froude numbers, the Froude number drops out of the problem. As the Froude number goes to zero, the convection instability turns into a recently discovered phase separation instability.Comment: 6 pages, 6 figures. An extended version. A simple and universal necessary criterion for convection presente

    Conductivity of Strongly Coupled Striped Superconductor

    Get PDF
    We study the conductivity of a strongly coupled striped superconductor using gauge/gravity duality (holography). The study is done analytically, in the large modulation regime. We show that the optical conductivity is inhomogeneous but isotropic at low temperatures. Near but below the critical temperature, we calculate the conductivity analytically at small frequency \omega, and find it to be both inhomogeneous and anisotropic. The anisotropy is imaginary and scales like 1/\omega. We also calculate analytically the speed of the second sound and the thermodynamic susceptibility.Comment: 32 page

    Scaling anomalies in the coarsening dynamics of fractal viscous fingering patterns

    Full text link
    We analyze a recent experiment of Sharon \textit{et al.} (2003) on the coarsening, due to surface tension, of fractal viscous fingering patterns (FVFPs) grown in a radial Hele-Shaw cell. We argue that an unforced Hele-Shaw model, a natural model for that experiment, belongs to the same universality class as model B of phase ordering. Two series of numerical simulations with model B are performed, with the FVFPs grown in the experiment, and with Diffusion Limited Aggregates, as the initial conditions. We observed Lifshitz-Slyozov scaling t1/3t^{1/3} at intermediate distances and very slow convergence to this scaling at small distances. Dynamic scale invariance breaks down at large distances.Comment: 4 pages, 4 eps figures; to appear in Phys. Rev.
    • …
    corecore