7,306 research outputs found
The Polarized and Unpolarized Photon Content of the Nucleon
The equivalent photon content of polarized and unpolarized nucleons (protons,
neutrons), utilized in Weizs\"acker--Williams approximations, are presented.
For this purpose a new expression for the elastic photon component of a
polarized nucleon is derived. The inelastic photon components are obtained from
the corresponding momentum evolution equations subject to the boundary
conditions of their vanishing at some low momentum scale. The resulting photon
asymmetries, important for estimating cross section asymmetries in photon
induced subprocesses are also presented for some typical relevant momentum
scales.Comment: LaTeX, 16 pages, 6 figure
Consensus-based control for a network of diffusion PDEs with boundary local interaction
In this paper the problem of driving the state of a network of identical
agents, modeled by boundary-controlled heat equations, towards a common
steady-state profile is addressed. Decentralized consensus protocols are
proposed to address two distinct problems. The first problem is that of
steering the states of all agents towards the same constant steady-state
profile which corresponds to the spatial average of the agents initial
condition. A linear local interaction rule addressing this requirement is
given. The second problem deals with the case where the controlled boundaries
of the agents dynamics are corrupted by additive persistent disturbances. To
achieve synchronization between agents, while completely rejecting the effect
of the boundary disturbances, a nonlinear sliding-mode based consensus protocol
is proposed. Performance of the proposed local interaction rules are analyzed
by applying a Lyapunov-based approach. Simulation results are presented to
support the effectiveness of the proposed algorithms
Delineating the polarized and unpolarized photon distributions of the nucleon in eN collisions
The production rates of lepton-photon and dimuon pairs at the HERA collider
and the HERMES experiment are evaluated in the leading order equivalent photon
approximation. It is shown that the production rates are sufficient to
facilitate the extraction of the polarized and unpolarized equivalent photon
distributions of the proton and neutron in the available kinematical regions.
It is pointed out that these results indicate the possibility of additional,
independent, tests concerning the unpolarized and polarized structure functions
F_{1,2}^N and g_{1,2}^N, respectively, of the nucleon.Comment: Final version, to appear in Eur. Phys.
Probing the Perturbative NLO Parton Evolution in the Small- Region
A dedicated test of the perturbative QCD NLO parton evolution in the very
small- region is performed. We find a good agreement with recent precision
HERA-data for , as well as with the present determination of the
curvature of . Characteristically, perturbative QCD evolutions result in
a positive curvature which increases as decreases. Future precision
measurements in the very small -region, , could provide a
sensitive test of the range of validity of perturbative QCDComment: Revised version, to appear in EPJ
Radio continuum observations of local star-forming galaxies using the Caltech Continuum Backend on the Green Bank Telescope
We observed radio continuum emission in 27 local (D < 70 Mpc) star-forming
galaxies with the Robert C. Byrd Green Bank Telescope between 26 GHz and 40 GHz
using the Caltech Continuum Backend. We obtained detections for 22 of these
galaxies at all four sub-bands and four more marginal detections by taking the
average flux across the entire bandwidth. This is the first detection (full or
marginal) at these frequencies for 22 of these galaxies. We fit spectral energy
distributions (SEDs) for all of the four-sub-band detections. For 14 of the
galaxies, SEDs were best fit by a combination of thermal free-free and
nonthermal synchrotron components. Eight galaxies with four-sub-band detections
had steep spectra that were only fit by a single nonthermal component. Using
these fits, we calculated supernova rates, total number of equivalent O stars,
and star formation rates within each ~23 arcsecond beam. For unresolved
galaxies, these physical properties characterize the galaxies' recent star
formation on a global scale. We confirm that the radio-far-infrared correlation
holds for the unresolved galaxies' total 33 GHz flux regardless of their
thermal fractions, though the scatter on this correlation is larger than that
at 1.4 GHz. In addition, we found that for the unresolved galaxies, there is an
inverse relationship between the ratio of 33 GHz flux to total far-infrared
flux and the steepness of the galaxy's spectral index between 1.4 GHz and 33
GHz. This relationship could be an indicator of the timescale of the observed
episode of star formation.Comment: 36 pages, 9 figures; accepted for publication in ApJ. First and
second author affiliation updated to reflect departmental name chang
Timelike and spacelike hadron form factors, Fock state components and light-front dynamics
A unified description of spacelike and timelike hadron form factors within a
light-front model was successfully applied to the pion. The model is extended
to the nucleon to study the role of pair production and of
nonvalence components in the nucleon form factors. Preliminary results in the
spacelike range are presented.Comment: 4 pages, espcrc1.sty. proceedings of FB XVIII (August 2006, Brazil),
to be published in Nucl. Phys.
Electromagnetic Hadron Form Factors and Higher Fock Components
Investigation of the spacelike and timelike electromagnetic form factors of
hadrons, within a relativistic microscopical model characterized by a small set
of hypothesis, could shed light on the components of hadron states beyond the
valence one. Our relativistic approach has been successfully applied first to
the pion and then the extension to the nucleon has been undertaken. The pion
case is shortly reviewed as an illustrative example for introducing the main
ingredients of our approach, and preliminary results for the nucleon in the
spacelike range are evaluated.Comment: 8 pages, 6 figs, espcrc1.sty included. Proceedings of Fifth
International Conference on Perspectives In Hadronic Physics, ICTP, May
22-26, 200
Electromagnetic form factors of the nucleon in spacelike and timelike regions
An approach for a unified description of the nucleon electromagnetic form
factors in spacelike and timelike regions is presented. The main ingredients of
our model are: a Mandelstam formula for the matrix elements of the nucleon
electromagnetic current; a 3-dimensional reduction of the problem on the
Light-Front performed within the so-called {\tt Propagator Pole Approximation}
({\bf PPA}), which consists in disregarding the analytical structure of the
Bethe-Salpeter amplitudes and of the quark-photon vertex function in the
integration over the minus components of the quark momenta; a dressed
photon vertex in the channel, where the photon is described by its
spin-1, hadronic component.Comment: 8 pages, 9 figs., macro added. Proceedings of the XI Conf. on
Problems in Theoretical Nuclear Physics, Cortona, Oct. 11-14, 200
- âŠ