316 research outputs found

    Orbital Polarization in Strained LaNiO3_{3}: Structural Distortions and Correlation Effects

    Full text link
    Transition-metal heterostructures offer the fascinating possibility of controlling orbital degrees of freedom via strain. Here, we investigate theoretically the degree of orbital polarization that can be induced by epitaxial strain in LaNiO3_3 films. Using combined electronic structure and dynamical mean-field theory methods we take into account both structural distortions and electron correlations and discuss their relative influence. We confirm that Hund's rule coupling tends to decrease the polarization and point out that this applies to both the d8Ld^8\underline{L} and d7d^7 local configurations of the Ni ions. Our calculations are in good agreement with recent experiments, which revealed sizable orbital polarization under tensile strain. We discuss why full orbital polarization is hard to achieve in this specific system and emphasize the general limitations that must be overcome to achieve this goal.Comment: 13 pages, 13 figure

    Low-energy description of the metal-insulator transition in the rare-earth nickelates

    Full text link
    We propose a simple theoretical description of the metal-insulator transition of rare-earth nickelates. The theory involves only two orbitals per nickel site, corresponding to the low-energy anti-bonding ege_g states. In the monoclinic insulating state, bond-length disproportionation splits the manifold of ege_g bands, corresponding to a modulation of the effective on-site energy. We show that, when subject to a local Coulomb repulsion UU and Hund's coupling JJ, the resulting bond-disproportionated state is a paramagnetic insulator for a wide range of interaction parameters. Furthermore, we find that when U3JU-3J is small or negative, a spontaneous instability to bond disproportionation takes place for large enough JJ. This minimal theory emphasizes that a small or negative charge-transfer energy, a large Hund's coupling, and a strong coupling to bond-disproportionation are the key factors underlying the transition. Experimental consequences of this theoretical picture are discussed.Comment: 17 pages, 10 figures; published version in the updat

    Atomistic spin dynamics of the CuMn spin glass alloy

    Full text link
    We demonstrate the use of Langevin spin dynamics for studying dynamical properties of an archetypical spin glass system. Simulations are performed on CuMn (20% Mn) where we study the relaxation that follows a sudden quench of the system to the low temperature phase. The system is modeled by a Heisenberg Hamiltonian where the Heisenberg interaction parameters are calculated by means of first-principles density functional theory. Simulations are performed by numerically solving the Langevin equations of motion for the atomic spins. It is shown that dynamics is governed, to a large degree, by the damping parameter in the equations of motion and the system size. For large damping and large system sizes we observe the typical aging regime.Comment: 18 pages, 9 figure

    Breeding of resistant strawberry cultivars for organic fruit production – Diallel crossing strategies and resistance tests for Botrytis cinerea and Xanthomonas fragariae

    Get PDF
    Organic strawberry production suffers from high yield losses caused by numerous fungal and bacterial diseases. Two of the most important diseases are the grey mould disease caused by Botrytis cinerea Pers. (teleomorph Botryotinia fuckeliana), and the bacterial angular leaf spot disease caused by Xanthomonas fragariae (Kennedy & King). Beside cultivation methods and organic plant protection measures, the development of resistant cultivars seems to be the most promising strategy in order to improve the productivity in organic strawberry cultivation. Therefore, we established resistance tests to determine resistant and susceptible strawberry cultivars and breeding selections. In a first run, 40 different cultivars and selections were tested for their susceptibility towards B. cinerea by artificial inoculation of fruits and leaves and evaluation of the disease symptoms. Plants of 40 cultivars were tested for susceptibility to X. fragariae by artificial inoculation in the greenhouse. In a diallel crossing approach, 12 commonly cultivated strawberry cultivars have been crossed reciprocally and propagated in a field trial. Important characteristics of the progeny such as ripening time, yield, morphological traits and occurrence of diseases have been evaluated for a period of two consecutive years and lead to the determination of general (GCA) and specific (SCA) combining abilities. Together with the results of the resistance tests we identified a set of genotypes that show resistant characteristics towards B. cinerea and might be suitable for use in organic cultivation systems. Furthermore, they can be used for targeted breeding experiments in the future

    Renormalization of effective interactions in a negative charge-transfer insulator

    Full text link
    We compute from first principles the effective interaction parameters appropriate for a low-energy description of the rare-earth nickelate LuNiO3_{3} involving the partially occupied ege_g states only. The calculation uses the constrained random-phase approximation and reveals that the effective on-site Coulomb repulsion is strongly reduced by screening effects involving the oxygen-pp and nickel-t2gt_{2g} states. The long-range component of the effective low-energy interaction is also found to be sizeable. As a result, the effective on-site interaction between parallel-spin electrons is reduced down to a small negative value. This validates effective low-energy theories of these materials proposed earlier. Electronic structure methods combined with dynamical mean-field theory are used to construct and solve an appropriate low-energy model and explore its phase diagram as a function of the on-site repulsion and Hund's coupling. For the calculated values of these effective interactions we find, in agreement with experiments, that LuNiO3_{3} is a metal without disproportionation of the ege_g occupancy when considered in its orthorhombic structure, while the monoclinic phase is a disproportionated insulator.Comment: 10 pages, 4 figure

    Protein-RNA linkage and post-translational modifications of two sobemovirus VPgs

    Get PDF
    Sobemoviruses possess a viral genome-linked protein (VPg) attached to the 5' end of viral RNA. VPg is processed from the viral polyprotein. In the current study, Cocksfoot mottle virus (CfMV) and Rice yellow mottle virus (RYMV) VPgs were purified from virions and analysed by mass spectrometry. The cleavage sites in the polyprotein and thereof the termini of VPg were experimentally proven. The lengths of the mature VPgs were determined to be 78 and 79 aa residues, respectively. The amino acid residues covalently linked to RNA in the two VPgs were, surprisingly, not conserved; it is a tyrosine at position 5 of CfMV VPg and serine at position 1 of RYMV VPg. Phosphorylations were identified in CfMV and RYMV VPgs with two positionally similar locations T20/S14 and S71/S72, respectively. RYMV VPg contains an additional phosphorylation site at S41

    Optical spectroscopy and the nature of the insulating state of rare-earth nickelates

    Full text link
    Using a combination of spectroscopic ellipsometry and DC transport measurements, we determine the temperature dependence of the optical conductivity of NdNiO3_3 and SmNiO3_{3} films. The optical spectra show the appearance of a characteristic two-peak structure in the near-infrared when the material passes from the metal to the insulator phase. Dynamical mean-field theory calculations confirm this two-peak structure, and allow to identify these spectral changes and the associated changes in the electronic structure. We demonstrate that the insulating phase in these compounds and the associated characteristic two-peak structure are due to the combined effect of bond-disproportionation and Mott physics associated with half of the disproportionated sites. We also provide insights into the structure of excited states above the gap.Comment: 12 pages, 13 figure

    Approaching finite-temperature phase diagrams of strongly correlated materials: a case study for V2O3

    Full text link
    Examining phase stabilities and phase equilibria in strongly correlated materials asks for a next level in the many-body extensions to the local-density approximation (LDA) beyond mainly spectroscopic assessments. Here we put the charge-self-consistent LDA+dynamical mean-field theory (DMFT) methodology based on projected local orbitals for the LDA+DMFT interface and a tailored pseudopotential framework into action in order to address such thermodynamics of realistic strongly correlated systems. Namely a case study for the electronic phase diagram of the well-known prototype Mott-phenomena system V2_2O3_3 at higher temperatures is presented. We are able to describe the first-order metal-to-insulator transitions with negative pressure and temperature from the self-consistent computation of the correlated total energy in line with experimental findings.Comment: 12 pages, 15 figures, new data adde
    corecore