14 research outputs found

    Three-sphere low-Reynolds-number swimmer with a passive elastic arm

    Get PDF
    One of the simplest model swimmers at low Reynolds number is the three-sphere swimmer by Najafi and Golestanian. It consists of three spheres connected by two rods which change their lengths periodically in non-reciprocal fashion. Here we investigate a variant of this model in which one rod is periodically actuated while the other is replaced by an elastic spring. We show that the competition between the elastic restoring force and the hydrodynamic drag produces a delay in the response of the passive elastic arm with respect to the active one. This leads to non-reciprocal shape changes and self-propulsion. After formulating the equations of motion, we study their solutions qualitatively and numerically. The leading-order term of the solution is computed analytically. We then address questions of optimization with respect to both actuation frequency and swimmer\u2019s geometry. Our results can provide valuable conceptual guidance in the engineering of robotic microswimmers

    EDUCATION AND METHODOLOGY: FROM ESSENCE TO DUE

    No full text
    This article is devoted to the problem, which has not yet been investigated in relation to the field of foreign language (including Russian) of education, namely, the problem of convergence of education as a phenomenon and methodology as a science. To solve this problem in the first part of the article deals with education as a phenomenon.Proposes a new interpretation of the education hierarchy and the principles of its construction. The author puts forward the idea that the education system needs to be designed as isofunctional model of the socialization process. In the second part it is argued that the technique is essentially the arch-Tector of the education system for what it is from a certain application of the science of language training needs to developing the theory and technology of education. The author presents the main characteristics of the new methodology. The main message of the article is to prove the following statements: No new me-codici basically impossible to build an effective education system. It is therefore necessary to the transition from essence to due

    Dynamics of Purcell’s three-link microswimmer with a passive elastic tail

    No full text
    One of the few possible mechanisms for self-propulsion at low Reynolds number is undulations of a passive elastic tail, as proposed in the classical work of Purcell (1977). This effect is studied here by investigating a variant of Purcell’s three-link swimmer model where the front joint angle is periodically actuated while the rear joint is driven by a passive torsional spring. The dynamic equations of motion are formulated and explicit expressions for the leading-order solution are derived by using perturbation expansion. The dependence of the motion on the actuation amplitude and frequency is analyzed, and optimization with respect to the swimmer’s geometry is conducted

    Dynamics and Optimal Actuation of a Three-Sphere Low-Reynolds-Number Swimmer with Muscle-Like Arms

    No full text
    The three-sphere swimmer by Najafi and Golestanian is composed of three spheres connected by two arms. The case in which the swimmer can control the lengths of the two arms has been studied in detail. Here we study a variation of the model in which the swimmer's arms are constructed according to Hill's model of muscular contraction. The swimmer is able to control the tension developed in the active components of the arms. The two shape parameters and the tensions acting on the two arms are then obtained by solving a system of ordinary differential equations. We study the qualitative properties of the solutions, compute analytically their leading order approximation and compare them with numerical simulations. We also formulate and solve some optimisation problems, aimed at finding the actuation strategies maximising performance, for various performance measures. Finally, we discuss the structure of the governing equations of our microswimmers from the point of view of control theory. We show that our systems are control affine systems with drift

    Sub-Riemannian geometry, Hamiltonian dynamics, micro-swimmers, copepod nauplii and copepod robot

    Get PDF
    Abstract The objective of this article is to present the seminal concepts and techniques of Sub-Riemannian geometry and Hamiltonian dynamics, complemented by adapted software to analyze the dynamics of the copepod micro-swimmer, where the model of swimming is the slender body approximation for Stokes flows in fluid dynamics. In this context, the copepod model is a simplification of the 3-link Purcell swimmer and is relevant to analyze more complex micro-swimmers. The mathematical model is validated by observations performed by Takagi’s team of Hawaii laboratory, showing the agreement between the predicted and observed motions. Sub-Riemannian geometry is introduced, assuming that displacements are minimizing the expanded mechanical energy of the micro-swimmer. This allows to compare different strokes and different micro-swimmers and minimizing the expanded mechanical energy of the micro-swimmer. The objective is to maximize the efficiency of a stroke (the ratio between the displacement produced by a stroke and its length). Using the Maximum Principle in the framework of Sub-Riemannian geometry, this leads to analyze family of periodic controls producing strokes to determine the most efficient one. Graded normal forms introduced in Sub-Riemannian geometry to evaluate spheres with small radius is the technique used to evaluate the efficiency of different strokes with small amplitudes, and to determine the most efficient stroke using a numeric homotopy method versus standard direct computations based on Fourier analysis. Finally a copepod robot is presented whose aim is to validate the computations and very preliminary results are given
    corecore