5,355 research outputs found

    Nonlinear instability of density-independent orbital-free kinetic energy functionals

    Full text link
    We study in this article the mathematical properties of a class of orbital-free kinetic energy functionals. We prove that these models are linearly stable but nonlinearly unstable, in the sense that the corresponding kinetic energy functionals are not bounded from below. As a matter of illustration, we provide an example of an electronic density of simple shape the kinetic energy of which is negative.Comment: 14 pages, 1 figur

    Analysis of current profiles by a study of pycnomeric distortion and identifying properties

    Get PDF
    It has, of course, always been recognized that one of the greatest uncertainties of dynamic oceanographic calculations is that which results from the necessity of selecting without definite evidence a surface of assumed zero motion to which the calculated relative velocities can be referred for evaluation in absolute terms...

    Preface

    Get PDF
    The Journal of Marine Research is intended particularly as an outlet for shorter articles on any aspect of scientific marine investigations or ·any subject with a direct or indirect bearing upon the problems of the sea. Due to the intimate connection and mutual relationship between hydrospheric and atmospheric events in nature, and to the virtual identity of dynamic methods and principles in Meteorology and Oceanography, contributions to physical meteorological theory in general and to our knowledge about the relationship between ocean and air, in particular will be considered equally pertinent to marine as to meteorological research, and therefore within the scope of this Journal...

    Electron correlation in solids via density embedding theory

    Get PDF
    Density matrix embedding theory (Phys. Rev. Lett. 109, 186404 (2012)) and density embedding theory ((Phys. Rev. B 89, 035140 (2014)) have recently been introduced for model lattice Hamiltonians and molecular systems. In the present work, the formalism is extended to the ab initio description of infinite systems. An appropriate definition of the impurity Hamiltonian for such systems is presented and demonstrated in cases of 1, 2 and 3 dimensions, using coupled cluster theory as the impurity solver. Additionally, we discuss the challenges related to disentanglement of fragment and bath states. The current approach yields results comparable to coupled cluster calculations of infinite systems even when using a single unit cell as the fragment. The theory is formulated in the basis of Wannier functions but it does not require separate localization of unoccupied bands. The embedding scheme presented here is a promising way of employing highly accurate electronic structure methods for extended systems at a fraction of their original computational cost

    Performance of a non-empirical meta-GGA density functional for excitation energies

    Full text link
    It is known that the adiabatic approximation in time-dependent density functional theory usually provides a good description of low-lying excitations of molecules. In the present work, the capability of the adiabatic nonempirical meta-generalized gradient approximation (meta-GGA) of Tao, Perdew, Staroverov, and Scuseria (TPSS) to describe atomic and molecular excitations is tested. The adiabatic (one-parameter) hybrid version of the TPSS meta-GGA and the adiabatic GGA of Perdew, Burke, and Ernzerhof (PBE) are also included in the test. The results are compared to experiments and to two well-established hybrid functionals PBE0 and B3LYP. Calculations show that both adiabatic TPSS and TPSSh functionals produce excitation energies in fairly good agreement with experiments, and improve upon the adiabatic local spin density approximation and, in particular, the adiabatic PBE GGA. This further confirms that TPSS is indeed a reliable nonhybrid universal functional which can serve as the starting point from which higher-level approximations can be constructed. The systematic underestimate of the low-lying vertical excitation energies of molecules with time-dependent density functionals within the adiabatic approximation suggests that further improvement can be made with nonadiabatic corrections.Comment: 7 page

    Gaussian approximations for the exchange-energy functional of current-carrying states: Applications to two-dimensional systems

    Full text link
    Electronic structure calculations are routinely carried out within the framework of density-functional theory, often with great success. For electrons in reduced dimensions, however, there is still a need for better approximations to the exchange-correlation energy functional. Furthermore, the need for properly describing current-carrying states represents an additional challenge for the development of approximate functionals. In order to make progress along these directions, we show that simple and efficient expressions for the exchange energy can be obtained by considering the short-range behavior of the one-body spin-density matrix. Applications to several two-dimensional systems confirm the excellent performance of the derived approximations, and verify the gauge-invariance requirement to be of great importance for dealing with current-carrying states

    Assembly and analysis of fragmentation data for liquid propellant vessels

    Get PDF
    Fragmentation data was assembled and analyzed for exploding liquid propellant vessels. These data were to be retrieved from reports of tests and accidents, including measurements or estimates of blast yield, etc. A significant amount of data was retrieved from a series of tests conducted for measurement of blast and fireball effects of liquid propellant explosions (Project PYRO), a few well-documented accident reports, and a series of tests to determine auto-ignition properties of mixing liquid propellants. The data were reduced and fitted to various statistical functions. Comparisons were made with methods of prediction for blast yield, initial fragment velocities, and fragment range. Reasonably good correlation was achieved. Methods presented in the report allow prediction of fragment patterns, given type and quantity of propellant, type of accident, and time of propellant mixing

    The WTO Cotton Case and US Domestic Policy

    Get PDF
    Crop Production/Industries, International Relations/Trade,

    Alchemical normal modes unify chemical space

    Get PDF
    In silico design of new molecules and materials with desirable quantum properties by high-throughput screening is a major challenge due to the high dimensionality of chemical space. To facilitate its navigation, we present a unification of coordinate and composition space in terms of alchemical normal modes (ANMs) which result from second order perturbation theory. ANMs assume a predominantly smooth nature of chemical space and form a basis in which new compounds can be expanded and identified. We showcase the use of ANMs for the energetics of the iso-electronic series of diatomics with 14 electrons, BN doped benzene derivatives (C62x_{6-2x}(BN)x_{x}H6_6 with x=0,1,2,3x = 0, 1, 2, 3), predictions for over 1.8 million BN doped coronene derivatives, and genetic energy optimizations in the entire BN doped coronene space. Using Ge lattice scans as reference, the applicability ANMs across the periodic table is demonstrated for III-V and IV-IV-semiconductors Si, Sn, SiGe, SnGe, SiSn, as well as AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb. Analysis of our results indicates simple qualitative structure property rules for estimating energetic rankings among isomers. Useful quantitative estimates can also be obtained when few atoms are changed to neighboring or lower lying elements in the periodic table. The quality of the predictions often increases with the symmetry of system chosen as reference due to cancellation of odd order terms. Rooted in perturbation theory the ANM approach promises to generally enable unbiased compound exploration campaigns at reduced computational cost

    Extended Thomas-Fermi Density Functional for the Unitary Fermi Gas

    Full text link
    We determine the energy density ξ(3/5)nϵF\xi (3/5) n \epsilon_F and the gradient correction λ2(n)2/(8mn)\lambda \hbar^2(\nabla n)^2/(8m n) of the extended Thomas-Fermi (ETF) density functional, where nn is number density and ϵF\epsilon_F is Fermi energy, for a trapped two-components Fermi gas with infinite scattering length (unitary Fermi gas) on the basis of recent diffusion Monte Carlo (DMC) calculations [Phys. Rev. Lett. {\bf 99}, 233201 (2007)]. In particular we find that ξ=0.455\xi=0.455 and λ=0.13\lambda=0.13 give the best fit of the DMC data with an even number NN of particles. We also study the odd-even splitting γN1/9ω\gamma N^{1/9} \hbar \omega of the ground-state energy for the unitary gas in a harmonic trap of frequency ω\omega determining the constant γ\gamma. Finally we investigate the effect of the gradient term in the time-dependent ETF model by introducing generalized Galilei-invariant hydrodynamics equations.Comment: 7 pages, 3 figures, 1 table; corrected some typos; published in Phys. Rev. A; added erratum: see also the unpublished diploma thesis of Marco Manzoni (supervisors: N. Manini and L. Salasnich) at http://www.mi.infm.it/manini/theses/manzoni.pd
    corecore