94 research outputs found

    Photocount statistics in mesoscopic optics

    Full text link
    We report the first observation of the impact of mesoscopic fluctuations on the photocount statistics of coherent light scattered in a random medium. Poisson photocount distribution of the incident light widens and gains additional asymmetry upon transmission through a suspension of small dielectric spheres. The effect is only appreciable when the average number of photocounts becomes comparable or larger than the effective dimensionless conductance g of the sample.Comment: Thoroughly revised text and figures, new data set, new figure adde

    Nonuniversal dynamic conductance fluctuations in disordered systems

    Full text link
    Sample-to-sample fluctuations of the time-dependent conductance of a system with static disorder have been studied by means of diagrammatic theory and microwave pulsed transmission measurements. The fluctuations of time-dependent conductance are not universal, i.e., depend on sample parameters, in contrast to the universal conductance fluctuations in the steady-state regime. The variance of normalized conductance, determined by the infinite-range intensity correlation C_3(t), is found to increase as a third power of delay time from an exciting pulse, t. C_3(t) grows larger than the long-range intensity correlation C_2(t) after a time t_q ~ ^{1/2} t_D (t_D being the diffusion time, being the average dimensionless conductance).Comment: Revised version, 6 pages, 5 figure

    Quantum theory of dynamic multiple light scattering

    Full text link
    We formulate a quantum theory of dynamic multiple light scattering in fluctuating disordered media and calculate the fluctuation and the autocorrelation function of photon number operator for light transmitted through a disordered slab. The effect of disorder on the information capacity of a quantum communication channel operating in a disordered environment is estimated and the use of squeezed light in diffusing-wave spectroscopy is discussed.Comment: Revised text, additional figur

    Microscopic derivation of self-consistent equations of Anderson localization in a disordered medium of finite size

    Full text link
    We present a microscopic derivation of self-consistent equations of Anderson localization in a disordered medium of finite size. The derivation leads to a renormalized, position-dependent diffusion coefficient. The position dependence of the latter is due to the position dependence of return probability in a bounded medium.Comment: 12 pages, 4 figure

    Diffusing-wave spectroscopy of nonergodic media

    Full text link
    We introduce an elegant method which allows the application of diffusing-wave spectroscopy (DWS) to nonergodic, solid-like samples. The method is based on the idea that light transmitted through a sandwich of two turbid cells can be considered ergodic even though only the second cell is ergodic. If absorption and/or leakage of light take place at the interface between the cells, we establish a so-called "multiplication rule", which relates the intensity autocorrelation function of light transmitted through the double-cell sandwich to the autocorrelation functions of individual cells by a simple multiplication. To test the proposed method, we perform a series of DWS experiments using colloidal gels as model nonergodic media. Our experimental data are consistent with the theoretical predictions, allowing quantitative characterization of nonergodic media and demonstrating the validity of the proposed technique.Comment: RevTeX, 12 pages, 6 figures. Accepted for publication in Phys. Rev.

    Temporal fluctuations of waves in weakly nonlinear disordered media

    Full text link
    We consider the multiple scattering of a scalar wave in a disordered medium with a weak nonlinearity of Kerr type. The perturbation theory, developed to calculate the temporal autocorrelation function of scattered wave, fails at short correlation times. A self-consistent calculation shows that for nonlinearities exceeding a certain threshold value, the multiple-scattering speckle pattern becomes unstable and exhibits spontaneous fluctuations even in the absence of scatterer motion. The instability is due to a distributed feedback in the system "coherent wave + nonlinear disordered medium". The feedback is provided by the multiple scattering. The development of instability is independent of the sign of nonlinearity.Comment: RevTeX, 15 pages (including 5 figures), accepted for publication in Phys. Rev.

    Noise in laser speckle correlation and imaging techniques

    Get PDF
    We study the noise of the intensity variance and of the intensity correlation and structure functions measured in light scattering from a random medium in the case when these quantities are obtained by averaging over a finite number N of pixels of a digital camera. We show that the noise scales as 1/N in all cases and that it is sensitive to correlations of signals corresponding to adjacent pixels as well as to the effective time averaging (due to the finite sampling time) and spatial averaging (due to the finite pixel size). Our results provide a guide to estimation of noise level in such applications as the multi-speckle dynamic light scattering, time-resolved correlation spectroscopy, speckle visibility spectroscopy, laser speckle imaging etc.Comment: submitted 14 May 201

    Diffusion and Localization of Cold Atoms in 3D Optical Speckle

    Full text link
    In this work we re-formulate and solve the self-consistent theory for localization to a Bose-Einstein condensate expanding in a 3D optical speckle. The long-range nature of the fluctuations in the potential energy, treated in the self-consistent Born approximation, make the scattering strongly velocity dependent, and its consequences for mobility edge and fraction of localized atoms have been investigated numerically.Comment: 8 pages, 11 figure

    Information transfer through disordered media by diffuse waves

    Full text link
    We consider the information content h of a scalar multiple-scattered, diffuse wave field ψ(r)\psi(\vec{r}) and the information capacity C of a communication channel that employs diffuse waves to transfer the information through a disordered medium. Both h and C are shown to be directly related to the mesoscopic correlations between the values of ψ(r)\psi(\vec{r}) at different positions r\vec{r} in space, arising due to the coherent nature of the wave. For the particular case of a communication channel between two identical linear arrays of n1n \gg 1 equally-spaced transmitters/receivers (receiver spacing a), we show that the average capacity n \propto n and obtain explicit analytic expressions for /n/n in the limit of nn \to \infty and kk \ell \to \infty, where k=2π/λk= 2\pi/ \lambda, λ\lambda is the wavelength, and \ell is the mean free path. Modification of the above results in the case of finite but large n and kk \ell is discussed as well.Comment: REVTeX 4, 12 pages, 7 figure

    Disorder-induced trapping versus Anderson localization in Bose-Einstein condensates expanding in disordered potentials

    Full text link
    We theoretically investigate the localization of an expanding Bose-Einstein condensate with repulsive atom-atom interactions in a disordered potential. We focus on the regime where the initial inter-atomic interactions dominate over the kinetic energy and the disorder. At equilibrium in a trapping potential and for small disorder, the condensate shows a Thomas-Fermi shape modified by the disorder. When the condensate is released from the trap, a strong suppression of the expansion is obtained in contrast to the situation in a periodic potential with similar characteristics. This effect crucially depends on both the momentum distribution of the expanding BEC and the strength of the disorder. For strong disorder, the suppression of the expansion results from the fragmentation of the core of the condensate and from classical reflections from large modulations of the disordered potential in the tails of the condensate. We identify the corresponding disorder-induced trapping scenario for which large atom-atom interactions and strong reflections from single modulations of the disordered potential play central roles. For weak disorder, the suppression of the expansion signals the onset of Anderson localization, which is due to multiple scattering from the modulations of the disordered potential. We compute analytically the localized density profile of the condensate and show that the localization crucially depends on the correlation function of the disorder. In particular, for speckle potentials the long-range correlations induce an effective mobility edge in 1D finite systems. Numerical calculations performed in the mean-field approximation support our analysis for both strong and weak disorder.Comment: New Journal of Physics; focus issue "Quantum Correlations in Tailored Matter - Common perspectives of mesoscopic systems and quantum gases"; 30 pages, 10 figure
    corecore