10,690 research outputs found
Performance and materials aspects of Ge:Be photoconductors
Ge:Be photoconductors were developed for low photon background applications in the 30 to 50 MM wavelength region. These detectors provide higher responsivity and lower noise equivalent power (NEP) than the Ge:Ga detectors currently operating in this wavelength range. Beryllium doped single crystals were grown by the Czochralski method from a carbon susceptor under a vacuum of approx. one million torr. An optimum detective quantum efficiency of 46% at a background flux of 1.5 x 10 to the 8th power photons/second (7 x 10 to the 13th power W) was reported. Ge:Be detector performance is strongly influenced by the absolute concentrations and the concentration ratio of residual shallow donors and shallow acceptors
Quantum Gauge Equivalence in QED
We discuss gauge transformations in QED coupled to a charged spinor field,
and examine whether we can gauge-transform the entire formulation of the theory
from one gauge to another, so that not only the gauge and spinor fields, but
also the forms of the operator-valued Hamiltonians are transformed. The
discussion includes the covariant gauge, in which the gauge condition and
Gauss's law are not primary constraints on operator-valued quantities; it also
includes the Coulomb gauge, and the spatial axial gauge, in which the
constraints are imposed on operator-valued fields by applying the
Dirac-Bergmann procedure. We show how to transform the covariant, Coulomb and
spatial axial gauges to what we call
``common form,'' in which all particle excitation modes have identical
properties. We also show that, once that common form has been reached, QED in
different gauges has a common time-evolution operator that defines
time-translation for states that represent systems of electrons and photons.
By combining gauge transformations with changes of representation from
standard to common form, the entire apparatus of a gauge theory can be
transformed from one gauge to another.Comment: Contribution for a special issue of Foundations of Physics honoring
Fritz Rohrlich; edited by Larry P. Horwitz, Tel-Aviv University, and Alwyn
van der Merwe, University of Denver (Plenum Publishing, New York); 40 pages,
REVTEX, Preprint UCONN-93-3, 1 figure available upon request from author
Regrowth-related defect formation and evolution in 1âMeV amorphized (001) Ge
Geimplanted with 1MeV Siâș at a dose of 1Ă10Âčâ”cmâ»ÂČ creates a buried amorphous layer that, upon regrowth, exhibits several forms of defectsâend-of-range (EOR), regrowth-related, and clamshell defects. Unlike Si, no planar {311} defects are observed. The minimal EOR defects are small dotlike defects and are very unstable, dissolving between 450 and 550°C. This is in contrast to Si, where the EOR defects are very stable. The amorphous layer results in both regrowth-related defects and clamshell defects, which were more stable than the EOR damage.This work is supported by Semiconductor Research Corporation
Contract No. 00057787
Non-adherence to eye care in people with diabetes
Objective Evaluate individual factors that impact adherence to eye care follow-up in patients with diabetes. Design and methods A 4-year retrospective chart review was conducted for 1968 patients with diabetes over age 40 from an urban academic center. Data collected included demographics, insurance, visual acuity, smoking status, medications, dates of dilated fundus examinations (DFE), and reported hemoglobin A1C and blood glucose levels. The primary outcome was timely DFE follow-up adherence following the initial eye exam visit. Results Overall, 41.6% of patients adhered to initial follow-up eye care recommendations. Multivariable analysis demonstrated that patients with severe diabetic retinopathy (DR) were more adherent than patients with mild DR (OR 1.86). Other variables associated with increased adherence were visual impairment and reported A1C or blood glucose. Smoking was associated with decreased adherence. Ethnicity and insurance were also significantly associated with adherence. Longitudinal follow-up rates were influenced by additional factors, including ethnicity and neighborhood deprivation index. Conclusions Patients with moderate to severe DR and/ or visual impairment were more likely to adhere to timely DFE follow-up. This could relate to the presence of visual symptoms and/or other systemic manifestations of diabetes. Smokers were less likely to adhere to timely DFE follow-up. One hypothesis is patients who smoke have other symptomatic health problems which patients prioritize over asymptomatic ocular disorders. In order to reduce vision loss from DR, practitioners should be aware that patients with mild and moderate DR, patients with normal vision, and smokers are at greater risk for poor follow-up eye care adherence. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved
MIPS: The Multiband Imaging Photometer for SIRTF
The Multiband Imaging Photometer for SIRTF (MIPS) is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700ÎŒm spectral region. It will use high performance photoconductive detectors from 3 to 200ÎŒm with integrating JFET amplifiers. From 200 to 700ÎŒm, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution
Formation of diluted IIIâV nitride thin films by N ion implantation
iluted IIIâNââVâËâ alloys were successfully synthesized by nitrogen implantation into GaAs,InP, and AlyGa1âyAs. In all three cases the fundamental band-gap energy for the ion beam synthesized IIIâNââVâËâ alloys was found to decrease with increasing N implantation dose in a manner similar to that observed in epitaxially grownGaNâAs1âx and InNâPâËâalloys. In GaNâAsâËâ the highest value of x (fraction of âactiveâ substitutional N on As sublattice) achieved was 0.006. It was observed that NAs is thermally unstable at temperatures higher than 850â°C. The highest value of x achieved in InNâPâËâ was higher, 0.012, and the NP was found to be stable to at least 850â°C. In addition, the N activation efficiency in implantedInNâPâËâ was at least a factor of 2 higher than that in GaNâAsâËâ under similar processing conditions. AlyGa1âyNâAsâËâ had not been made previously by epitaxial techniques. N implantation was successful in producing AlyGa1âyNâAsâËâalloys. Notably, the band gap of these alloys remains direct, even above the value of y (y>0.44) where the band gap of the host material is indirect.This work was supported by the ââPhotovoltaic Materials
Focus Areaââ in the DOE Center of Excellence for the Synthesis
and Processing of Advanced Materials, Office of Science,
Office of Basic Energy Sciences, Division of Materials
Sciences under U.S. Department of Energy Contract No. DE-ACO3-76SF00098. The work at UCSD was partially supported
by Midwest Research Institute under subcontractor
No. AAD-9-18668-7 from NREL
High fidelity quantum memory via dynamical decoupling: theory and experiment
Quantum information processing requires overcoming decoherence---the loss of
"quantumness" due to the inevitable interaction between the quantum system and
its environment. One approach towards a solution is quantum dynamical
decoupling---a method employing strong and frequent pulses applied to the
qubits. Here we report on the first experimental test of the concatenated
dynamical decoupling (CDD) scheme, which invokes recursively constructed pulse
sequences. Using nuclear magnetic resonance, we demonstrate a near order of
magnitude improvement in the decay time of stored quantum states. In
conjunction with recent results on high fidelity quantum gates using CDD, our
results suggest that quantum dynamical decoupling should be used as a first
layer of defense against decoherence in quantum information processing
implementations, and can be a stand-alone solution in the right parameter
regime.Comment: 6 pages, 3 figures. Published version. This paper was initially
entitled "Quantum gates via concatenated dynamical decoupling: theory and
experiment", by Jacob R. West, Daniel A. Lidar, Bryan H. Fong, Mark F. Gyure,
Xinhua Peng, and Dieter Suter. That original version split into two papers:
http://arxiv.org/abs/1012.3433 (theory only) and the current pape
- âŠ