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Abstract

Ge:Be photoconductors have been developed for low-
photon-background applications in the 30 - 50 um wavelength
region. These detectors provide higher responsivity and
lowei noise-equivalent power (NEP) than the Ge:Ga detectors
currentiy operating in this wavelength range. Beryllium-
doped single crystals were grown by the Czochralski method
from a carbon susceptor under a vacuum of ~ 10-6 torr.

We report an optimum detective quantum efficiency of 46% at
a background flux of 1.5 x 108 photons/cecond (7 x 10-13 w).
Ge:Be detector performance is strongly influenced by the
absolute concentrations and the concentration ratio of
residual shallow donors and shallow acceptors.

Key words: Photoconductors, Infrared detection, Ge:Be
Introduction

Beryllium-doped germanium photoconductors were first
investigated by Shenker et al in 1967(1). Because Be, a
substitutional double acceptor, has a first ionization
energg of 24.5 meV and is highly soluble in the Ge lattice
(= 1020car3 at 1200 k)(2), Ge:Be has since been a
primary candidate for an optimized photoconductor in the
30 - 50 un wavelength range. This region is of interest to
present and future space astronomy projects which require
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far-infrared detectors approaching photon-noise limited
operation at low background levels. The development and
application of Ge:Be detectors have been hindered, however,
by the lack of reliably doped Ge:Be crystals with good
crystallography and low residual impurity concentrations.

Crystal Growth and Characterization

Detectors have been produced from several ~ 700 g
beryllium-doped Czochralski grown single crystals [long
axis parallel to <113>] with low dislocation dencity
(< 1000 cm-2), Use of a high-purity germanium growth
facility allowed for excellent control of the shallow
residual impurity concentrations. In addition, Czochralski
growth results in better crystallography than the zone-
leveling technique whic hai been used by other groups to
develop Ge:Be detectors(3,4), Because beryllium readily
oxidizes, however, the use of standard high-purity germanium
growth conditions (i.e., silica crucible and Hy atmos-
phere) could result in the loss of beryllium acceptors due
to the formation of stable Be0 from the reduction of either
Si02 or the Hy0 which is present in equilibrium with
the Hs.

Azcalculation following the method used by Darken(5)
indicates that the formation of stable Be0 would be thermo-
dynamically favorable at the melting point of germanium
(1200 K) for a beryllium concentration in the melt of
5 x 1015cm3 for a partial pressure ratio of p(H20)/p(H>)
in excess of 6 x 10~7, Singe the lowest ratio generally
attained in practice (~ 10~2) could lead to a loss of beryl-
1ium acceptors, Ge:Be crystals were grown from a carbon sus-
ceptor under vacuum (~ 10-6 torr) to eliminate the two pri-
mary sources of oxygen. Doping with beryllium was achieved
using a heavily doped (5.5 x 1018car3) master alloy. Beryl-
1ium concentration profiles along the length of the crys-
tals were determined by room temperature resistivity and
Hall effect measurements and have been within a factor of
two of the calculated estimates based on the weight of the
charge and the beryllium concentration in the master alloy.

Figure 1 shows the beryllium concentration profiles for
three Ge:Be single crystals. The equilibri?m s?gregation
coefficient, Ko, for beryllium in germanium(1,2) "has been
reported to be 0.07 - 0.08. The profiles indicate an effec-
tive segregation coefficient, Lefg. of approximately 0.25
for our growth conditions. Since this segregation behavior
is also observed for phosphorus (Ko = 0.08, Kaeff = 0.25)
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Fig. 1. Net acceptor concentration as a function of
distance along the crystal axis.

during the g.,owth of high-purity germanium at the same pull
rate and rotation speed, we conclude that this represents
the expected segregation of the beryllium and that loss due
to the formation of BeO is not a significant factor.
Variable temperature Hall effect measurements (300 -
10 X} were mzde to determine concentrations of shallow resi-
dual acceptors and donors. The starting germanium charges
hac¢ electrically active shallow donor concentrations
INp - Nal < 1011 — 10123, After growth from the carbon
susceptor, these crystals had net shallow acceptor concen-
trations, believed to be due primarily to the activation of
aluminum ?hich existed previously as electrically neutral
compounds(5:6) . Complete compensation of the shallow
acceptors was achieved in one crystal oy the addition of a
Ge:P master alloy to the charge.



TABLE I. Material Parameters for Ge:Be Photoconductors

Be Conc. Shallow Majority Net Concentration of

Detecter (cm'3) Levels Shallow Levels (cm'3)
703- 4.2 1.3x101%  acceptors 8x1011
706-14.3 5.0x1014 acceptors 5x1011
707-13.5  3.5x101  acceptors 7x10+2
710- 9.5 5.0x101% donors 6x101°

Detector Performance

Ge:Be photoconductors which have been evaluated are
identified in Table I. Detectors measured 1 x 1 x 3 mm3
with boron implanted contacts (1014cm2 at 25 keV and
2 x 1018ca2 at 50 keV) on opposite 1 x 3 mm faces(7).
Layers of titanium (~ 550 A) and gold (~ 8500 A) were depos-
ited by argor sputtering. After metallization, the detec-
tors were heated to ~ 300° C for one hour in argon to anneal
damage from the implant, activate the boron dopant, and
re'ieve stress in the metal layers. The detector surfaces
were polished etched (4:1 HNO3:HF). Detectors were
soldered with pure indium to a 1 mm diameter carbon steel
shaft and mounted in polished brass integrating cavities
with 1 mm diameter apertures.

The conditions under which the photoconductors were
evaluated are summarized in Fig. 2. The low background
condition for detector testing is achieved with a combina-
tion of reduced filter transmission and the geometric
factor imposed by the size of the apertures. An external
chopper switches the infrared source between room tempera-
ture and liquid nitrogen temperature blacxbodies, and the
signal is then filtered using a cooled narrow band filter
train centered at 42 um. Calculation of diffraction
Tossest8) for the limiting aperture (@ = 1 mm) indicates
that the loss for this geometry at 42 uym is approximately
8%. The value given in Fig. 2 for the background limited
NEP assumes an npespgonsive = 1 in the integrating cavity.
A standard transimpedance amplifier was used to m?a§ure the
detector photocurrent under constant bias voltage(9

Optimum detector results for several Ge:Be detectors
operated at a chopping frequency of 20 Hz are presented in
Table II. Results obtained from a Ge:Ga detector ([Ga] =
2 x 1014cm3, (Np] =1 x 1012car3) under the same
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Fig. 2. Ge:Be photoconductor evaluation conditions at
42 um,

conditions at 42 um are presented for comparison. These
results indicate that Ge:Be detectors can provide higher
responsivity and lower NEP than the state-of-the-art Ge:Ga
detectors currently used in the 30 - 50 uym range.

Qur results support the conclusion of both Bratt et
a1(3) and Brunsmann et al{4) that the optimum beryllium
Concentration lies in the range of 5 x 1014 to 1 x 1015¢cm3,
Variations of the beryllium concentration within this range
are less critical to the detector behavior than variations
which may occur in the concentrations of shallow donors and
acceptors. The tabulated data indicates that the responsiv-
ity can decrease by over an order of magnitude when the
detector operating temperature is reduced from 4.2 to 3.0 K.,
This temperature dependence can be understood in terms of
the carrier lifetime dependence on the temperature-sensitive
proce?s of recombination at ionized sha'low acceptor
sitest10,11) | The responsivity and NEP as a function of
temperature for three detectors (operated at constant bias)
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Fig. 3. Responsivity and NEP as a function of temperature
for Ge:Be detectors 703-4.2, 706-14.3, and 707-13.5 at a
constant field of 5.0 V/cm and a chopping frequency of

20 Hz.

are presented in Fig. 3. Minimum NEP is attained at 3.8 K,
although higher responsivity can be obtained if necessary at
4.2 K without a major decrease in the signal-to-noise ratio.
The increase in responsivity with decreasing beryllium con-
centration indicates that the concentration of ionized sites
due to compensation is not the sole factor in determining
the mobility and that scattering due to neutral beryllium

is significant at these concentrations and temperatures.

In Figure 4, the responsivity as a function of temper-
ature at constant bias for detectcr 710-9.5 [Np(shallow) >
NA(shallowA] is compared to that of detector 706-14.3, a
device with the same beryllium concentration. As the theor-
etical modeis would predict, overcompensation of the shallow
acceptors which leads to significant compensation of the
beryllium severely reduces the mobility and eliminates the
strong temperature dependence of the lifetime which is
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Fig. 4. Responsivity as a function of temperature for Ge:Be
detectors 706-14.3 and 710-9.5 at a constant field of 5.0
V/cm and a chopping frequency of 20 Hz.

present when the ratio Np(shallow)/NA(shallow) is closer to
unity. 1In a case whare Np(shallow) >> ND(shallow), a simi-
lar effect would be expected. Thus, the high values of the
responsivity (Gn = .95 carriers/photon) can only be attained
when good control can be exercised over the residual impur-
ity concentration in the detector material.

Ge:Be detectors are significantly less affected by the
current spiking behavior which is common in Ge:Ga devices.
Detectors operated at 3.8 and 4.2 K do not display any spik-
ing behavior throughout the operating bias range. At 3.0 K,
spiking occurs only very close to the breakdown field and
does not extend to lower biases where the optimum NEP is
attained.

Summary ana Conciusions

Ge:Be photoconductors produced from Czochralski-grown
single crystals provide higher responsivities and Tower NEP
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than the Ge:Ga detectors currently used in the 30 - 50 um
region. Consistent detector performance has been obtained
with material selected from three different c,ystals and
from detectors which were fabricated from different regions
of a single crystal slice. These prototype Ge:Be detectors
are very stable devices. Performance apprecaches the photon
noise 1imit to within a factor of 1.4 {ngetective = 46%).

The temperature dependence of the responsivity is
strongly influenced by both the absolute concentration and
the concentration ratio of shallow donors and shallow
acceptors. The control of_ these shallow levels which can
be attained down to tae 1010cm3 range with a special
Czochralski crystal puller offers interesting possibilities
for the optimization of Ge:Be detectors. Precise compensa-
tion of shallow residual acceptors should lead to a detector
with very high responsivity at 4.2 K. Finally, the insensi-
tivity of the NEP over the 3.0 - 4,2 K temperature range
indicates that Ge:Be detectors could easily be integrated
with other devices which are more restricted in their
optimum operating temperature range.

Acknowledgment s

We are indebted to P. L. Richards and M. R, Hueschen
for their advice in the design of the photoconductor test
facility. D. Watson of C. H. Townes' group fabricated and
characterized the filters. W. L. Hansen prepared the
master alloy.

This work was supported by NASA Contract No. W-14,606
under Interagency Agreement with the Director's Orfice of
Energy Research, Office of Health and Environmental Re-
search, U.S. Department of Energy under Contract No.
DE-AC03-76SF00098.

Refe ~ences

1. Shenker H, Swiggard E M and Moore W J, Trans. Met. Soc.
AIME 239, 347 (1967).

2. Goncharov L A and Kervalishvili P D, Inorganic Materials
14, No. 6, 775 {1978).

3. Bratt P R, Lewis N N and Long L E, Final Techn‘cal
Report NAS2-9385 (1977).

4., Brunsmann U, Egle H, Frenzl 0 and Dinges P, Final
Report, ESTEC Contract 4458/80/NL/HP(SC) (1982).

-9-



10.

1]:!

Darken ). S, IEEE Trans. Nucl. Sci. N .
(1979). i. NS-26, No. 1, 324

Hubbard G S, Haller E E and Hansen W L, IEEE Traas.
Nucl. Sci. NS-25, No. 1, 362 (1978).

Haller E £, Hueschen M R and Richards P L, Appl. Ph
Lett. 34, 495 (1979). » PP TS

Fussel W B, NBS Technical Mute 594-8 (1974).
Low F J, SPIE 280, 56 (1981).

Alexander D H, Baron R and Stafsudd O M, IEEE Trans
Elec. Dev. ED-27, No. 1, 71 (1580).

Geim K, Pensl G and Sh
(1982): n ultz M, Appl. Phys. A 27, 11

This report was donc with support from the
Depariment of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of Californiz, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product ramsz dues
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy 12 the exclusicr of others that
may be suitable.

-10-



	GeneralDisclaimer.pdf
	0172A01.pdf
	0172A02.pdf
	0172A03.pdf
	0172A04.pdf
	0172A05.pdf
	0172A06.pdf
	0172A07.pdf
	0172A08.pdf
	0172A09.pdf
	0172A10.pdf
	0172A11.pdf
	0172A12.pdf
	0172A13.pdf
	0172A14.pdf
	0172B01.pdf



