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Abstract

Ge:Be photoconductors have been developed for low-
photon-background applications in the 30 - 50 um wavelength
region. These detectors provide higher responsivity and
lower noise-equivalent power (NEP) than the Ge:Ga detectors
currently operating in this wavelength range. Beryllium-
doped single crystals were grown by the Czochralski method
from a carbon susceptor under a vacuum of - 10-6 torr.
We report an optimum detective quantum efficiency of 46% at
a background flux of 1.5 x 10 8 photons/second (7 x 10-13 W),
Ge:Be detector- performance is strongly influenced by the
absolute concentrations and the concentration ratio of
residual shallow donors and shallow acceptors.

Key words: Photoconductors, Infrared detection, Ge:Be

Introduction

Beryllium-doped germanium photoconductors were first
investigated by Shenker et al in 1967( 1 ), Because Be, a
substitutional double acceptor,  has a first ionization
energy of 24.5 meV and is highly soluble in the Ge lattice
(- 10 cm-3 at 1200 K)( 2 ), Ge:Be has since been a
primary candidate for an optimized photoconductor in the
30 - 50 urn wavelength range. This region is of interest to
present and future space astronomy projects which require
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far-infrared detectors approaching photon-noise limited
operation at low background levels. The development and
application of Ge:Be detectors have been hindered, however,
by the lack of reliably doped Ge:Be crystals with good
crystallography and low residual impurity concentrations.

Crystal Growth and Characterization

Detectors have been produced from several - 700 g
beryllium-doped Czochralski grown single crystals [long
axis parallel to <113>] with low dislocation density
(< 1000 cm-2). Use of a high-purity germanium growth
facility allowed for excellent control of the shallow
residual impurity concentrations. In addition, Czochralski
growth results in better crystallography than the zone-
leveling technique whichh hag been used by other groups to
develop Ge:Be detectors( 3 . 4 ). Because beryllium readily
oxidizes, however, the use of standard high-purity germanium
growth conditions (i.e., silica crucible and H2 atmos-
phere) could result in the loss of beryllium acceptors due
to the formation of stable Be0 from the reduction of either
Si02 or the H2O which is present in equilibrium with
the H2.

A calculation following the method used by Darken(5)
indicates that the formation of stable Be0 would be thermo-
dynamically favorable at the melting point of germanium
(1200 KIfor a beryllium concentration in the melt of
5 x 101 m-3 for a partial pressure ratio of p(H20)/p(H2)
in excess of 6 x 10-7 . Sine the lowest ratio generally
attained in practice (- 10- ) could lead to a loss of beryl-
lium acceptors, Ge:Be crystals were grown from a carbon sus-
ceptor under vacuum (- 10-6 torr) to eliminate the two pri-
mary sources of oxygen. Doping with beryllium was achieved
using a heavily doped (5.5 x 1018cm-3 ) master alloy. Beryl-
lium concentration profiles along the length of the crys-
tals were determined by room temperature resistivity and
Hall effect measurements and have been within a factor of
two of the calculated estimates based on the weight of the
charge and the beryllium concentration in the master alloy.

Figure 1 shows the beryllium concentration profiles for
three Ge:Be single crystals. The equilibriuym s gregation
coefficient, Ko, for bery l lium in germanium 1 , 21 has been
reported to be 0.07 - 0.08. The profiles indicate an effec-
tive segregation coefficient, geff., of approximately 0.25
for our growth conditions. Sire this segregation behavior
is also observed for phosphorus (Ko = 0.08, Keff - 0.25)
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Fig. 1. Net acceptor concentration as a function of
distance along the crystal axis.

during the g. •owth of high-purity germanium at the same pull
rate and rotation speed, we conclude that this represents

the expected segregation of the beryllium and that loss due
to the formation of Be0 is not a significant factor.

Variable temperature Hall effect measurements (300 -

10 K) were made to determine concentrations of shallow resi-

dual acceptors and donors. The starting germanium charges
had electrically active shallow donor concentrations

INp - NA; < 1011 - 1012cm- 3 . After growth from the carbon
susceptor, these crystals had net shallow acceptor concen-

trations, believed to be due primarily to the activation of
aluminum y►hich existed previously as electrically neutral
compounds( 5 9 6 ). Complete compensation of the shallow

acceptors was achieved in one crystal ay the addition of a

Ge:P master alloy to the charge.

wE
a
.cz
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TABLE I. Material Parameters for Ge:Be Photoconductors

Be Conc. Shallow Majority Net Concentration of

Detector (cm-3 ) Levels Shallow Levels (cm 3)

703- 4.2 1.3x1015 acceptors 8x1011

706-14.3 5.0x1024 acceptors 5x1011

707-13.5 3.5x1014 acceptors 7x10'2

710- 9.5 5.Ox10
14

donors 6x1013

Detector Performance

Ge:3e photoconductors which have been evaluated are

identified in Table I. Detectors measured 1 x 1 x 3 mm3
with bo4ron implanted contacts (10 14c m-2 at 25 keV and
2 x 1014cmr2 at 50 keV) on opposite 1 x 3 mm2 f aces(7).
Layers of titanium (- 550 A) and gold (- 8500 A) were depos-

ited by argon. sputtering. After metallization, the detec-
tors were heated to - 300 0 C for one hour in argon to anneal
damage from the implant, activate the boron dopant, and
relieve stress in the metal layers. The detector surfaces

were polished etched (4:1 HNO3:HF). Detectors were
soldered with pure indium to a 1 mm diameter carbon steel

shaft and mounted in polished brass integrating cavities

with 1 mm diameter apertures.
The conditions under which the photoconductors were

evaluated are summarized in Fig. 2. The low background

condition for detector testing is achieved with a combina-
tion of reduced filter transmission and the geometric
factor imposed by the size of the apertures. An external
chopper switches the infrared source between room tempera-

ture and liquid nitrogen temperature blacKbodies, and the
signal is then filtered using a cooled narrow band filter
train4entered at 42um. Calculation of diffraction

losses 8 ) for the limiting aperture (0 = 1 mm) indicates
that the loss for this geometry at 42 um is approximately

8%. The value given in Fig. 2 for the background lien t2d
NEP assumes an nresponsive = 1 in the integrating cavity.
A standard transimpedance amplifier was used to m a ure the

detector photocurrent under constant bias voltage^9^.
Optimum detector results for several Ge:Be detectors

operated at a chopping frequency of 20 Hz are presented in
Table H. Results obtained from a Ge:Ga detector ([Ga]
2 x 1014cm-3 , [ND] = 1 x 1012crrr 3 ) under the same
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Fig. 2. Ge:Be photoconductor evaluation conditions at

42 um.

conditions at 42 um are presented for comparison. These
results indicate that Ge:Be detectors can provide higher

responsivity and lower NEP than the state-of-the-art Ge:Ga
detectors currently used in the 30 - 50 pm range.

Our results support the conclusion of both Bratt et

al( 3 ) and Brunsmann et al(4 ) that the optimum beryllium

concentration lies in tno range of 5 x 10 14 to 1 x 1015crrr3.

Variations of the beryllium concentration within this range

are less critical to the detector behavior than variations

which may occur in the concentrations of shallow donors and

acceptors. The tabulated data indicates that the responsiv-
ity can decrease by over an order of magnitude when the

detector operating temperature is reduced from 4.2 to 3.0 K.
This temperature dependence can be understood in terms of

the carrier lifetime dependence on the temperature-sensitive
process of recombination at ionized shallow acceptor

sitesl 10 , 11 ). The responsivity and NEP as a function of
temperature for three detectors (operated at constant bias)
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Fig. 3. Responsivity and NEP as a function of temperature

for Ge:Be detectors 703-4.2, 706-14.3, and 707-13.5 at a
constant field of 5.0 V/cm and a chopping frequency of
20 Hz.

are presented in Fig. 3. Minimum NEP is attained at 3.8 K,
although higher responsivity can be obtained if necessary at

4.2 K without a major decrease in the signal-to-noise ratio.
The increase in responsivity with decreasing beryllium con-

centration indicates that the concentration of ionized sites
due to compensation is not the sole factor in determining
the mobility and that scattering due to neutral beryllium

is significant at these concentrations and temperatures.

In Figure 4, the responsivity as a function of temper-
ature at constant bias for detectcr 710-9.5 [ N D(shallow) >
NA(shallow))I is compared to that of detector 706-14.3, a
device with the same beryllium concentration. As the theor-

etical modus would predict, overcompensation of the shallow

acceptors which leads to significant compensation of the

beryllium severely reduces the mobility and eliminates the
strong temperature dependence of the lifetime which is
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Fig. 4. Responsivity as a function of temperature for Ge:Be

detectors 706-14.3 and 710-9.5 at a constant field of 5.0
V/cm and a chopping frequency of 20 Hz.

present when the ratio ND(shallow)/NA(shallow) is closer to
unity. In a case where NA(shallow) » ND(shallow), a simi-
lar effect would be expected. Thus, the high values of the

responsivity (Gn = .95 carriers/photon) can only be attained

when good control can be exercised over the residual impur-

ity concentration in the detector material.

Ge:Be detectors are significantly less affected by the

current spiking behavior which is common in Ge:Ga devices.
Detectors operated at 3.8 and 4.2 K do not display any spik-
ing behavior th roughout the operating bias range. At 3.0 K,
spiking occurs only very close to the breakdown field and

does not extend to lower biases where the optimum NEE' is
attained.

Summary ano Conclusions

Ge:Be photoconductors produced from Czochralski-grown

single crystals provide higher responsivities and lower NEP
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than the Ge:Ga detectors currently used in the 30 - 50 Um

region. Consistent detector performance has been obtained
with material selected from three di fferent crystals and

from detectors which were fabricated from different regions
of a single crystal s l ice. These prototype Ge:Be detector4
are very stable devices. Performance approaches the photon
noise limit to within a factor of 1.4 ( ndetective = 46X).

The temperature dependence of the responsivity is
strongly influenced by both the absolute concentration and
the concentration ratio of shallow donors and shallow
acceptors. The control of these shallow levels which can
be attained down to the 10 10cm-3 range with a special
Czochralski crystal puller offer, interesting possibilities
for the optimization of Ge:Be detectors. Precise compensa-
tion of shallow residual acceptors should lead to a detector
with very high responsivity at 4.2 K. Finally, the insensi-
tivity of the NEP over the 3.0 — 4.2 K temperature range
indicates that Ge:Be detectors could easily be integrated
with other devices which are more restricted in their
optimum operating temperature range.
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