9 research outputs found

    Effects of climate and atmospheric nitrogen deposition on early to mid-term stage litter decomposition across biomes

    Get PDF
    Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1-3.5% and of the more stable substrates by 3.8-10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4-2.2% and that of low-quality litter by 0.9-1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate. © Copyright © 2021 Kwon, Shibata, Kepfer-Rojas, Schmidt, Larsen, Beier, Berg, Verheyen, Lamarque, Hagedorn, Eisenhauer, Djukic and TeaComposition Network

    Effect of organic acids on sorption of uranyl ions in solution onto ZrP2O7

    No full text
    Hydration of zirconium diphosphate (ZrP2O7) conduced to formation of active sites in solid/liquid interface. In ZrP2O7/NaClO4 0.5 M suspensions, active sites and their acidity constants are quite determined but the presence of some impurities is now studied. This work was conducted to determine the surface properties changes produced by oxalic and citric acid during the hydration process. Moreover the presence of organic acids with ZrP2O7 modified reveals an increase in uranium sorption constants. The zirconium diphosphate has been characterized using X-ray powder diffraction (XRD), Scanning electron microscopy (SEM) and Particle induced X-ray emission and Neutron (PIXE). Furthermore, the specific surface area, measured by the BET method, was 3.5 m2/g. The pH corresponding to the isoelectric point, determined by Zeta Potential measurements and mass titration was 3.6. The sites density calculated using titration curves was around of 5.37 s/nm2 for NaClO4 0.5 M, 13.71 s/nm2 for NaClO4 0.5 M/citric acid 0.1 M and 7.33 s/nm2 NaClO4 0.5 M/oxalic acid 0.1 M. The surface acidity constants and species distribution in surface were calculated by means of simulation of the titration curves with the FITEQL code (constant capacitance model), for ZrO and PO amphoteric sites of ZrP2O7. The uranyl sorption edge was determined for NaClO4 0.5 M. It spreads between pH 3 and 4.5 for complete sorption according to the previously published results. In the ZrP2O7–citrate modified surface, the uranyl sorption edge begin at pH 2 and was almost complete at pH 3.2 while ZrP2O7–oxalate modified surface edge started at 50% of sorption at pH of 1.5 and was complete at pH 3

    Early stage litter decomposition across biomes

    No full text
    © 2018 Elsevier B.V. Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from −9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained <0.5% of the variation for Green tea and 5% for Rooibos tea, and was of significance only under unfavorable decomposition conditions (i.e. xeric versus mesic environments). When the data were aggregated at the biome scale, climate played a significant role on decomposition of both litter types (explaining 64% of the variation for Green tea and 72% for Rooibos tea). No significant effect of land-use on early stage litter decomposition was noted within the temperate biome. Our results indicate that multiple drivers are affecting early stage litter mass loss with litter quality being dominant. In order to be able to quantify the relative importance of the different drivers over time, long-term studies combined with experimental trials are needed

    Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes

    Get PDF
    Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1-3.5% and of the more stable substrates by 3.8-10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4-2.2% and that of low-quality litter by 0.9-1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.This work was performed within the TeaComposition initiative, carried out by 190 institutions worldwide. We thank for funding support for the workshop and data analysis from the ILTER. We acknowledge support by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118), Scientific Grant Agency VEGA (Grant No. 2/0101/18), as well as by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program (Grant Agreement No. 677232). Thanks are due to FCT/MCTES for the financial support to CESAM (UIDB/50017/2020 + UIDP/50017/2020) and to the project PORBIOTA (POCI-01-0145-FEDER-022127). AI Sousa was funded by national funds through the FCT-Foundation for Science and Technology, I.P., under the project CEECIND/00962/2017. HS and CB acknowledge FCT support to cE3c through UID/BIA/00329/2013, UID/BIA/00329/2019, and UIDB/00329/2020, and the project PORBIOTA - POCI-01-0145-FEDER-022127. We are also thankful to UNILEVER for sponsoring the Lipton tea

    Early stage litter decomposition across biomes

    Full text link
    peer reviewedThrough litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and metaanalyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from −9 to +26 °C MAT and from 60 to 3113mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained b0.5% of the variation for Green tea and 5% for Rooibos tea, and was of significance only under unfavorable decomposition conditions (i.e. xeric versus mesic environments).When the data were aggregated at the biome scale, climate played a significant role on decomposition of both litter types (explaining 64% of the variation for Green tea and 72% for Rooibos tea).No significant effect of land-use on early stage litter decompositionwas notedwithin the temperate biome. Our results indicate that multiple drivers are affecting early stage littermass loss with litter quality being dominant. In order to be able to quantify the relative importance of the different drivers over time, long-term studies combined with experimental trials are needed

    Effects of climate and atmospheric nitrogen deposition on early to mid-term stage litter decomposition across biomes

    Get PDF
    International audienceLitter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1– 3.5% and of the more stable substrates by 3.8–10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4–2.2% and that of low-quality litter by 0.9–1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate

    Early stage litter decomposition across biomes

    Get PDF
    Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from −9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained <0.5% of the variation for Green tea and 5% for Rooibos tea, and was of significance only under unfavorable decomposition conditions (i.e. xeric versus mesic environments). When the data were aggregated at the biome scale, climate played a significant role on decomposition of both litter types (explaining 64% of the variation for Green tea and 72% for Rooibos tea). No significant effect of land-use on early stage litter decomposition was noted within the temperate biome. Our results indicate that multiple drivers are affecting early stage litter mass loss with litter quality being dominant. In order to be able to quantify the relative importance of the different drivers over time, long-term studies combined with experimental trials are needed.This work was performed within the TeaComposition initiative, carried out by 190 institutions worldwide. We thank Gabrielle Drozdowski for her help with the packaging and shipping of tea, Zora Wessely and Johannes Spiegel for the creative implementation of the acknowledgement card, Josip Dusper for creative implementation of the graphical abstract, Christine Brendle for the GIS editing, and Marianne Debue for her help with the data cleaning. Further acknowledgements go to Adriana Principe, Melanie Köbel, Pedro Pinho, Thomas Parker, Steve Unger, Jon Gewirtzman and Margot McKleeven for the implementation of the study at their respective sites. We are very grateful to UNILEVER for sponsoring the Lipton tea bags and to the COST action ClimMani for scientific discussions, adoption and support to the idea of TeaComposition as a common metric. The initiative was supported by the following grants: ILTER Initiative Grant, ClimMani Short-Term Scientific Missions Grant (COST action ES1308; COST-STSM-ES1308-36004; COST-STM-ES1308-39006; ES1308-231015-068365), INTERACT (EU H2020 Grant No. 730938), and Austrian Environment Agency (UBA). Franz Zehetner acknowledges the support granted by the Prometeo Project of Ecuador's Secretariat of Higher Education, Science, Technology and Innovation (SENESCYT) as well as Charles Darwin Foundation for the Galapagos Islands (2190). Ana I. Sousa, Ana I. Lillebø and Marta Lopes thanks for the financial support to CESAM (UID/AMB/50017), to FCT/MEC through national funds (PIDDAC), and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020. The research was also funded by the Portuguese Foundation for Science and Technology, FCT, through SFRH/BPD/107823/2015 (A.I. Sousa), co-funded by POPH/FSE. Thomas Mozdzer thanks US National Science Foundation NSF DEB-1557009. Helena C. Serrano thanks Fundação para a Ciência e Tecnologia (UID/BIA/00329/2013). Milan Barna acknowledges Scientific Grant Agency VEGA (2/0101/18). Anzar A Khuroo acknowledges financial support under HIMADRI project from SAC-ISRO, India

    Phosphors Based on Phosphates of NaZr2(PO4)3 and Langbeinite Structural Families

    No full text
    corecore