651 research outputs found

    Stability in microcanonical many-body spin glasses

    Full text link
    We generalize the de Almeida-Thouless line for the many-body Ising spin glass to the microcanonical ensemble and show that it coincides with the canonical one. This enables us to draw a complete microcanonical phase diagram of this model

    Surface terms on the Nishimori line of the Gaussian Edwards-Anderson model

    Full text link
    For the Edwards-Anderson model we find an integral representation for some surface terms on the Nishimori line. Among the results are expressions for the surface pressure for free and periodic boundary conditions and the adjacency pressure, i.e., the difference between the pressure of a box and the sum of the pressures of adjacent sub-boxes in which the box can been decomposed. We show that all those terms indeed behave proportionally to the surface size and prove the existence in the thermodynamic limit of the adjacency pressure.Comment: Final version with minor corrections. To appear in Journal of Statistical Physic

    Symmetry, complexity and multicritical point of the two-dimensional spin glass

    Full text link
    We analyze models of spin glasses on the two-dimensional square lattice by exploiting symmetry arguments. The replicated partition functions of the Ising and related spin glasses are shown to have many remarkable symmetry properties as functions of the edge Boltzmann factors. It is shown that the applications of homogeneous and Hadamard inverses to the edge Boltzmann matrix indicate reduced complexities when the elements of the matrix satisfy certain conditions, suggesting that the system has special simplicities under such conditions. Using these duality and symmetry arguments we present a conjecture on the exact location of the multicritical point in the phase diagram.Comment: 32 pages, 6 figures; a few typos corrected. To be published in J. Phys.

    Multicritical Points of Potts Spin Glasses on the Triangular Lattice

    Full text link
    We predict the locations of several multicritical points of the Potts spin glass model on the triangular lattice. In particular, continuous multicritical lines, which consist of multicritical points, are obtained for two types of two-state Potts (i.e., Ising) spin glasses with two- and three-body interactions on the triangular lattice. These results provide us with numerous examples to further verify the validity of the conjecture, which has succeeded in deriving highly precise locations of multicritical points for several spin glass models. The technique, called the direct triangular duality, a variant of the ordinary duality transformation, directly relates the triangular lattice with its dual triangular lattice in conjunction with the replica method.Comment: 18 pages, 2, figure

    Accuracy thresholds of topological color codes on the hexagonal and square-octagonal lattices

    Full text link
    Accuracy thresholds of quantum error correcting codes, which exploit topological properties of systems, defined on two different arrangements of qubits are predicted. We study the topological color codes on the hexagonal lattice and on the square-octagonal lattice by the use of mapping into the spin glass systems. The analysis for the corresponding spin glass systems consists of the duality, and the gauge symmetry, which has succeeded in deriving locations of special points, which are deeply related with the accuracy thresholds of topological error correcting codes. We predict that the accuracy thresholds for the topological color codes would be 1pc=0.109681-p_c = 0.1096-8 for the hexagonal lattice and 1pc=0.109231-p_c = 0.1092-3 for the square-octagonal lattice, where 1p1-p denotes the error probability on each qubit. Hence both of them are expected to be slightly lower than the probability 1pc=0.1100281-p_c = 0.110028 for the quantum Gilbert-Varshamov bound with a zero encoding rate.Comment: 6 pages, 4 figures, the previous title was "Threshold of topological color code". This is the published version in Phys. Rev.

    Error correcting code using tree-like multilayer perceptron

    Full text link
    An error correcting code using a tree-like multilayer perceptron is proposed. An original message \mbi{s}^0 is encoded into a codeword \boldmath{y}_0 using a tree-like committee machine (committee tree) or a tree-like parity machine (parity tree). Based on these architectures, several schemes featuring monotonic or non-monotonic units are introduced. The codeword \mbi{y}_0 is then transmitted via a Binary Asymmetric Channel (BAC) where it is corrupted by noise. The analytical performance of these schemes is investigated using the replica method of statistical mechanics. Under some specific conditions, some of the proposed schemes are shown to saturate the Shannon bound at the infinite codeword length limit. The influence of the monotonicity of the units on the performance is also discussed.Comment: 23 pages, 3 figures, Content has been extended and revise

    Duality and Multicritical Point of Two-Dimensional Spin Glasses

    Full text link
    Determination of the precise location of the multicritical point and phase boundary is a target of active current research in the theory of spin glasses. In this short note we develop a duality argument to predict the location of the multicritical point and the shape of the phase boundary in models of spin glasses on the square lattice.Comment: 4 pages, 1 figure; Reference updated, definition of \tilde{V} added; to be published in J. Phys. Soc. Jp

    Convergence theorems for quantum annealing

    Get PDF
    We prove several theorems to give sufficient conditions for convergence of quantum annealing, which is a protocol to solve generic optimization problems by quantum dynamics. In particular the property of strong ergodicity is proved for the path-integral Monte Carlo implementation of quantum annealing for the transverse Ising model under a power decay of the transverse field. This result is to be compared with the much slower inverse-log decay of temperature in the conventional simulated annealing. Similar results are proved for the Green's function Monte Carlo approach. Optimization problems in continuous space of particle configurations are also discussed.Comment: 19 page

    Rotational invariance and order-parameter stiffness in frustrated quantum spin systems

    Full text link
    We compute, within the Schwinger-boson scheme, the Gaussian-fluctuation corrections to the order-parameter stiffness of two frustrated quantum spin systems: the triangular-lattice Heisenberg antiferromagnet and the J1-J2 model on the square lattice. For the triangular-lattice Heisenberg antiferromagnet we found that the corrections weaken the stiffness, but the ground state of the system remains ordered in the classical 120 spiral pattern. In the case of the J1-J2 model, with increasing frustration the stiffness is reduced until it vanishes, leaving a small window 0.53 < J2/J1 < 0.64 where the system has no long-range magnetic order. In addition, we discuss several methodological questions related to the Schwinger-boson approach. In particular, we show that the consideration of finite clusters which require twisted boundary conditions to fit the infinite-lattice magnetic order avoids the use of ad hoc factors to correct the Schwinger-boson predictions.Comment: 9 pages, Latex, 6 figures as ps files, fig.1 changed and minor text corrections, to appear in Phys.Rev.

    Typical performance of low-density parity-check codes over general symmetric channels

    Get PDF
    Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. Theoretical framework for dealing with general symmetric channels is provided, based on which Gallager and MacKay-Neal codes are studied as examples of LDPC codes. It has been shown that the basic properties of these codes known for particular channels, including the property to potentially saturate Shannon's limit, hold for general symmetric channels. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel noise models.Comment: 10 pages, 4 figures, RevTeX4; an error in reference correcte
    corecore