34 research outputs found

    A novel shape descriptor based on empty morphological skeleton

    Get PDF
    Los Alamitos, US

    Optimization of MicroCT Imaging and Blood Vessel Diameter Quantitation of Preclinical Specimen Vasculature with Radiopaque Polymer Injection Medium

    Get PDF
    Vascular networks within a living organism are complex, multi-dimensional, and challenging to image capture. Radio-angiographic studies in live animals require a high level of infrastructure and technical investment in order to administer costly perfusion mediums whose signals metabolize and degrade relatively rapidly, diminishing within a few hours or days. Additionally, live animal specimens must not be subject to long duration scans, which can cause high levels of radiation exposure to the specimen, limiting the quality of images that can be captured. Lastly, despite technological advances in live-animal specimen imaging, it is quite difficult to minimize or prevent movement of a live animal, which can cause motion artifacts in the final data output. It is demonstrated here that through the use of postmortem perfusion protocols of radiopaque silicone polymer mediums and ex-vivo organ harvest, it is possible to acquire a high level of vascular signal in preclinical specimens through the use of micro-computed tomographic (microCT) imaging. Additionally, utilizing high-order rendering algorithms, it is possible to further derive vessel morphometrics for qualitative and quantitative analysis

    Non-Invasive Microstructure and Morphology Investigation of the Mouse Lung: Qualitative Description and Quantitative Measurement

    Get PDF
    BACKGROUND: Early detection of lung cancer is known to improve the chances of successful treatment. However, lungs are soft tissues with complex three-dimensional configuration. Conventional X-ray imaging is based purely on absorption resulting in very low contrast when imaging soft tissues without contrast agents. It is difficult to obtain adequate information of lung lesions from conventional X-ray imaging. METHODS: In this study, a recently emerged imaging technique, in-line X-ray phase contrast imaging (IL-XPCI) was used. This powerful technique enabled high-resolution investigations of soft tissues without contrast agents. We applied IL-XPCI to observe the lungs in an intact mouse for the purpose of defining quantitatively the micro-structures in lung. FINDINGS: The three-dimensional model of the lung was successfully established, which provided an excellent view of lung airways. We highlighted the use of IL-XPCI in the visualization and assessment of alveoli which had rarely been studied in three dimensions (3D). The precise view of individual alveolus was achieved. The morphological parameters, such as diameter and alveolar surface area were measured. These parameters were of great importance in the diagnosis of diseases related to alveolus and alveolar scar. CONCLUSION: Our results indicated that IL-XPCI had the ability to represent complex anatomical structures in lung. This offered a new perspective on the diagnosis of respiratory disease and may guide future work in the study of respiratory mechanism on the alveoli level

    Growth Pattern Analysis of Murine Lung Neoplasms by Advanced Semi-Automated Quantification of Micro-CT Images

    Get PDF
    Computed tomography (CT) is a non-invasive imaging modality used to monitor human lung cancers. Typically, tumor volumes are calculated using manual or semi-automated methods that require substantial user input, and an exponential growth model is used to predict tumor growth. However, these measurement methodologies are time-consuming and can lack consistency. In addition, the availability of datasets with sequential images of the same tumor that are needed to characterize in vivo growth patterns for human lung cancers is limited due to treatment interventions and radiation exposure associated with multiple scans. In this paper, we performed micro-CT imaging of mouse lung cancers induced by overexpression of ribonucleotide reductase, a key enzyme in nucleotide biosynthesis, and developed an advanced semi-automated algorithm for efficient and accurate tumor volume measurement. Tumor volumes determined by the algorithm were first validated by comparison with results from manual methods for volume determination as well as direct physical measurements. A longitudinal study was then performed to investigate in vivo murine lung tumor growth patterns. Individual mice were imaged at least three times, with at least three weeks between scans. The tumors analyzed exhibited an exponential growth pattern, with an average doubling time of 57.08 days. The accuracy of the algorithm in the longitudinal study was also confirmed by comparing its output with manual measurements. These results suggest an exponential growth model for lung neoplasms and establish a new advanced semi-automated algorithm to measure lung tumor volume in mice that can aid efforts to improve lung cancer diagnosis and the evaluation of therapeutic responses

    New Imaging Approaches for Understanding Lung Cancer Response to Treatment

    No full text

    Validation of two-dimensional and three-dimensional measurements of subpleural alveolar size parameters by optical coherence tomography

    No full text
    Optical coherence tomography (OCT) has been increasingly used for imaging pulmonary alveoli. Only a few studies, however, have quantified individual alveolar areas, and the validity of alveolar volumes represented within OCT images has not been shown. To validate quantitative measurements of alveoli from OCT images, we compared the cross-sectional area, perimeter, volume, and surface area of matched subpleural alveoli from microcomputed tomography (micro-CT) and OCT images of fixed air-filled swine samples. The relative change in size between different alveoli was extremely well correlated (r > 0.9, P < 0.0001), but OCT images underestimated absolute sizes compared to micro-CT by 27% (area), 7% (perimeter), 46% (volume), and 25% (surface area) on average. We hypothesized that the differences resulted from refraction at the tissue–air interfaces and developed a ray-tracing model that approximates the reconstructed alveolar size within OCT images. Using this model and OCT measurements of the refractive index for lung tissue (1.41 for fresh, 1.53 for fixed), we derived equations to obtain absolute size measurements of superellipse and circular alveoli with the use of predictive correction factors. These methods and results should enable the quantification of alveolar sizes from OCT images in vivo

    Intra-arterial catheter for simultaneous microstructural and molecular imaging <em>in vivo</em>.

    No full text
    Advancing understanding of human coronary artery disease requires new methods that can be used in patients for studying atherosclerotic plaque microstructure in relation to the molecular mechanisms that underlie its initiation, progression and clinical complications, including myocardial infarction and sudden cardiac death. Here we report a dual-modality intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo using a combination of optical frequency domain imaging (OFDI) and near-infrared fluorescence (NIRF) imaging. By providing simultaneous molecular information in the context of the surrounding tissue microstructure, this new catheter could provide new opportunities for investigating coronary atherosclerosis and stent healing and for identifying high-risk biological and structural coronary arterial plaques in vivo
    corecore