1,695 research outputs found

    Horizon-absorption effects in coalescing black-hole binaries: An effective-one-body study of the non-spinning case

    Get PDF
    We study the horizon absorption of gravitational waves in coalescing, circularized, nonspinning black hole binaries. The horizon absorbed fluxes of a binary with a large mass ratio (q=1000) obtained by numerical perturbative simulations are compared with an analytical, effective-one-body (EOB) resummed expression recently proposed. The perturbative method employs an analytical, linear in the mass ratio, effective-one-body (EOB) resummed radiation reaction, and the Regge-Wheeler-Zerilli (RWZ) formalism for wave extraction. Hyperboloidal (transmitting) layers are employed for the numerical solution of the RWZ equations to accurately compute horizon fluxes up to the late plunge phase. The horizon fluxes from perturbative simulations and the EOB-resummed expression agree at the level of a few percent down to the late plunge. An upgrade of the EOB model for nonspinning binaries that includes horizon absorption of angular momentum as an additional term in the resummed radiation reaction is then discussed. The effect of this term on the waveform phasing for binaries with mass ratios spanning 1 to 1000 is investigated. We confirm that for comparable and intermediate-mass-ratio binaries horizon absorbtion is practically negligible for detection with advanced LIGO and the Einstein Telescope (faithfulness greater than or equal to 0.997)

    Early star formation traced by the highest redshift quasars

    Full text link
    The iron abundance relative to alpha-elements in the circumnuclear region of quasars is regarded as a clock of the star formation history and, more specifically, of the enrichment by SNIa. We investigate the iron abundance in a sample of 22 quasars in the redshift range 3.0<z<6.4 by measuring their rest frame UV FeII bump, which is shifted into the near-IR, and by comparing it with the MgII 2798 flux. The observations were performed with a device that can obtain near-IR spectra in the range 0.8-2.4 um in one shot, thereby enabling an optimal removal of the continuum underlying the FeII bump. We detect iron in all quasars including the highest redshift (z=6.4) quasar currently known. The uniform observational technique and the wide redshift range allows a reliable study of the trend of the FeII/MgII ratio with redshift. We find the FeII/MgII ratio is nearly constant at all redshifts, although there is marginal evidence for a higher FeII/MgII ratio in the quasars at z~6. If the FeII/MgII ratio reflects the Fe/alpha abundance, this result suggests that the z~6 quasars have already undergone a major episode of iron enrichment. We discuss the possible implications of this finding for the star formation history at z>6. We also detect a population of weak iron emitters at z~4.5, which are possibly hosted in systems that evolved more slowly. Alternatively, the trend of the FeII/MgII ratio at high redshift may reflect significantly different physical conditions of the circumnuclear gas in such high redshift quasars.Comment: Replaced to match the accepted version (ApJL in press), 5 page

    Molecular Gas, Dust and Star Formation in Galaxies: II. Dust properties and scalings in \sim\ 1600 nearby galaxies

    Full text link
    We aim to characterize the relationship between dust properties. We also aim to provide equations to estimate accurate dust properties from limited observational datasets. We assemble a sample of 1,630 nearby (z<0.1) galaxies-over a large range of Mstar, SFR - with multi-wavelength observations available from wise, iras, planck and/or SCUBA. The characterization of dust emission comes from SED fitting using Draine & Li dust models, which we parametrize using two components (warm and cold ). The subsample of these galaxies with global measurements of CO and/or HI are used to explore the molecular and/or atomic gas content of the galaxies. The total Lir, Mdust and dust temperature of the cold component (Tc) form a plane that we refer to as the dust plane. A galaxy's sSFR drives its position on the dust plane: starburst galaxies show higher Lir, Mdust and Tc compared to Main Sequence and passive galaxies. Starburst galaxies also show higher specific Mdust (Mdust/Mstar) and specific Mgas (Mgas/Mstar). The Mdust is more closely correlated with the total Mgas (atomic plus molecular) than with the individual components. Our multi wavelength data allows us to define several equations to estimate Lir, Mdust and Tc from one or two monochromatic luminosities in the infrared and/or sub-millimeter. We estimate the dust mass and infrared luminosity from a single monochromatic luminosity within the R-J tail of the dust emission, with errors of 0.12 and 0.20dex, respectively. These errors are reduced to 0.05 and 0.10 dex, respectively, if the Tc is used. The Mdust is correlated with the total Mism (Mism \propto Mdust^0.7). For galaxies with Mstar 8.5<log(Mstar/Msun) < 11.9, the conversion factor \alpha_850mum shows a large scatter (rms=0.29dex). The SF mode of a galaxy shows a correlation with both the Mgass and Mdust: high Mdust/Mstar galaxies are gas-rich and show the highest SFRs.Comment: 24 pages, 28 figures, 6 tables, Accepted for publication in A&

    NGC 5506 Unmasked as a Narrow Line Seyfert 1: A Direct View of the Broad Line Region using Near-IR Spectroscopy

    Get PDF
    This letter presents incontrovertible evidence that NGC5506 is a Narrow Line Seyfert 1 (NLSy1). Our new 0.9-1.4 micron spectrum of its nucleus clearly shows the permitted OI 1.1287 micron line (with full width at half maximum <2000 km/s) and the `1 micron FeII lines'. These lines can only originate in the optically-thick broad line region (BLR) and, among Seyfert nuclei the latter series of lines are seen only in NLSy1s. The obscuration to the BLR, derived from a rough estimate of the OI 1.1287 micron / OI 8446 Angstrom ratio and from the reddening of the near-IR Paschen lines, is A_v > 5. Together, these results make NGC5506 the first identified case of an optically-obscured NLSy1. This new classification helps explain its radio to X-ray properties, which until now were considered highly anomalous. However, interesting new concerns are raised: e.g., NGC5506 is unusual in hosting both a `type 1' AGN and a nuclear water vapor megamaser. As the brightest known NLSy1, NGC5506 is highly suitable for study at wavebands less affected by obscuration.Comment: 4 pages, to appear in A&A Letter

    Condensation transition in a model with attractive particles and non-local hops

    Full text link
    We study a one dimensional nonequilibrium lattice model with competing features of particle attraction and non-local hops. The system is similar to a zero range process (ZRP) with attractive particles but the particles can make both local and non-local hops. The length of the non-local hop is dependent on the occupancy of the chosen site and its probability is given by the parameter pp. Our numerical results show that the system undergoes a phase transition from a condensate phase to a homogeneous density phase as pp is increased beyond a critical value pcp_c. A mean-field approximation does not predict a phase transition and describes only the condensate phase. We provide heuristic arguments for understanding the numerical results.Comment: 11 Pages, 6 Figures. Published in Journal of Statistical Mechanics: Theory and Experimen

    Binary black hole merger in the extreme mass ratio limit

    Get PDF
    We discuss the transition from quasi-circular inspiral to plunge of a system of two nonrotating black holes of masses m1m_1 and m2m_2 in the extreme mass ratio limit m1m2(m1+m2)2m_1m_2\ll (m_1+m_2)^2. In the spirit of the Effective One Body (EOB) approach to the general relativistic dynamics of binary systems, the dynamics of the two black hole system is represented in terms of an effective particle of mass μm1m2/(m1+m2)\mu\equiv m_1m_2/(m_1+m_2) moving in a (quasi-)Schwarzschild background of mass Mm1+m2M\equiv m_1+m_2 and submitted to an O(μ){\cal O}(\mu) radiation reaction force defined by Pad\'e resumming high-order Post-Newtonian results. We then complete this approach by numerically computing, \`a la Regge-Wheeler-Zerilli, the gravitational radiation emitted by such a particle. Several tests of the numerical procedure are presented. We focus on gravitational waveforms and the related energy and angular momentum losses. We view this work as a contribution to the matching between analytical and numerical methods within an EOB-type framework.Comment: 14 pages, six figures. Revised version. To appear in the CQG special issue based around New Frontiers in Numerical Relativity conference, Golm (Germany), July 17-21 200

    The menstruation experience: Attitude dimensions among South African students

    Get PDF
    This study aimed to investigate the attitudes and experiences regarding menstruation among undergraduate women at a historically disadvantaged South African university. A total of 255 women participated in the study. The majority of participants were black women (coloured = 55%; African = 29 .2%). They responded to the Menstrual Attitudes Questionnaire (MAQ) and a demographic questionnaire. Data were analysed using descriptive statistics and ANOVA with post-hoc tests. The majority of women in the study (78%) had positive attitudes towards menstruation, viewing it as a natural event that can be anticipated and predicted. However, many of the women (51–58%) perceived it as debilitating and bothersome to everyday living. Menstruation was perceived by women as impacting on participation and performance in higher education, suggesting that the provision of tertiary education for previously disadvantaged groups needs to consider the needs of women who experience difficulty managing menstruation. The provision of material resources, education in self-care strategies and distribution of information to normalise menstruation may assist the adverse impact of menstruation on their higher education experience .DHE

    How to tell a gravastar from a black hole

    Full text link
    Gravastars have been recently proposed as potential alternatives to explain the astrophysical phenomenology traditionally associated to black holes, raising the question of whether the two objects can be distinguished at all. Leaving aside the debate about the processes that would lead to the formation of a gravastar and the astronomical evidence in their support, we here address two basic questions: Is a gravastar stable against generic perturbations? If stable, can an observer distinguish it from a black hole of the same mass? To answer these questions we construct a general class of gravastars and determine the conditions they must satisfy in order to exist as equilibrium solutions of the Einstein equations. For such models we perform a systematic stability analysis against axial-perturbations, computing the real and imaginary parts of the eigenfrequencies. Overall, we find that gravastars are stable to axial perturbations, but also that their quasi-normal modes differ from those of a black hole of the same mass and thus can be used to discern, beyond dispute, a gravastar from a black hole.Comment: 16 pages, 13 figures, minor improvemen
    corecore