27 research outputs found

    The Ciliogenic Transcription Factor RFX3 Regulates Early Midline Distribution of Guidepost Neurons Required for Corpus Callosum Development

    Get PDF
    The corpus callosum (CC) is the major commissure that bridges the cerebral hemispheres. Agenesis of the CC is associated with human ciliopathies, but the origin of this default is unclear. Regulatory Factor X3 (RFX3) is a transcription factor involved in the control of ciliogenesis, and Rfx3–deficient mice show several hallmarks of ciliopathies including left–right asymmetry defects and hydrocephalus. Here we show that Rfx3–deficient mice suffer from CC agenesis associated with a marked disorganisation of guidepost neurons required for axon pathfinding across the midline. Using transplantation assays, we demonstrate that abnormalities of the mutant midline region are primarily responsible for the CC malformation. Conditional genetic inactivation shows that RFX3 is not required in guidepost cells for proper CC formation, but is required before E12.5 for proper patterning of the cortical septal boundary and hence accurate distribution of guidepost neurons at later stages. We observe focused but consistent ectopic expression of Fibroblast growth factor 8 (Fgf8) at the rostro commissural plate associated with a reduced ratio of GLIoma-associated oncogene family zinc finger 3 (GLI3) repressor to activator forms. We demonstrate on brain explant cultures that ectopic FGF8 reproduces the guidepost neuronal defects observed in Rfx3 mutants. This study unravels a crucial role of RFX3 during early brain development by indirectly regulating GLI3 activity, which leads to FGF8 upregulation and ultimately to disturbed distribution of guidepost neurons required for CC morphogenesis. Hence, the RFX3 mutant mouse model brings novel understandings of the mechanisms that underlie CC agenesis in ciliopathies

    Use of alternative and complementary therapies in labor and delivery care: a cross-sectional study of midwives" training in Catalan hospitals accredited as centers for normal birth

    Get PDF
    Background: The use of complementary and alternative medicine (CAM) and complementary and alternative therapies (CAT) during pregnancy is increasing. Scientific evidence for CAM and CAT in the field of obstetrics mainly covers pain relief in labor. Midwives are responsible for labor and delivery care: hence, their knowledge of CAM and CAT is important. The aims of this study are to describe the professional profile of midwives who provide care for natural childbirth in Catalan hospitals accredited as centers for normal birth, to assess midwives" level of training in CAT and their use of these therapies, and to identify specific resources for CAT in labor wards. Methods: A descriptive, cross-sectional, quantitative method was used to assess the level of training and use of CAT by midwives working at 28 hospitals in Catalonia, Spain, accredited as public normal birth centers. Results: Just under a third of midwives (30.4%) trained in CAT after completion of basic training. They trained in an average of 5.97 therapies (SD 3.56). The number of CAT in which the midwives were trained correlated negatively with age (r = - 0.284; p < 0.001) and with their time working at the hospital in years (r = - 0.136; p = 0.036). Midwives trained in CAT considered that the following therapies were useful or very useful for pain relief during labor and delivery: relaxation techniques (64.3%), hydrotherapy (84.8%) and the application of compresses to the perineum (75.9%). The availability of resources for providing CAT during normal birth care varied widely from center to center. Conclusions: Age may influence attitudes towards training. It is important to increase the number of midwives trained in CAM for pain relief during childbirth, in order to promote the use of CAT and ensure efficiency and safety. CAT resources at accredited hospitals providing normal childbirth care should also be standardized

    Demyelination in mild cognitive impairment suggests progression path to Alzheimer's disease.

    Get PDF
    The preclinical Alzheimer's disease (AD) - amnestic mild cognitive impairment (MCI) - is manifested by phenotypes classified into exclusively memory (single-domain) MCI (sMCI) and multiple-domain MCI (mMCI). We suggest that typical MCI-to-AD progression occurs through the sMCI-to-mMCI sequence as a result of the extension of initial pathological processes. To support this hypothesis, we assess myelin content with a Magnetization Transfer Ratio (MTR) in 21 sMCI and 21 mMCI patients and in 42 age-, sex-, and education-matched controls. A conjunction analysis revealed MTR reduction shared by sMCI and mMCI groups in the medial temporal lobe and posterior structures including white matter (WM: splenium, posterior corona radiata) and gray matter (GM: hippocampus; parahippocampal and lingual gyri). A disjunction analysis showed the spread of demyelination to prefrontal WM and insula GM in executive mMCI. Our findings suggest that demyelination starts in the structures affected by neurofibrillary pathology; its presence correlates with the clinical picture and indicates the method of MCI-to-AD progression. In vivo staging of preclinical AD can be developed in terms of WM/GM demyelination
    corecore