9 research outputs found

    Osteopontin Knockout Does Not Influence the Severity of Rectal Damage in a Preclinical Model of Radiation Proctitis in Mice

    No full text
    International audienceBackground Radiation damage to the normal gut is a dose-limiting factor in the application of radiation therapy to treat abdominal and pelvic cancers. All tissue cell types react in concert to orchestrate an acute inflammatory reaction followed by a delayed chronic scarring process. Osteopontin (OPN) is a matricellular protein known to be involved in various physiological but also pathological processes such as tissue inflammation and fibrosis. Aims The aim of our study was to determine whether OPN knockout influences the severity of radiation proctitis and to investigate the role of OPN in the development of radiation-induced gut damage. Results Here we show that human radiation proctitis is associated with increased immunostaining of the intracellular and extracellular/matrix-linked isoforms of OPN. Moreover, endothelial cells in vitro and rectal tissue in a preclinical model of radiation proctitis in mice both respond to radiation exposure by a sustained increase in OPN mRNA and protein levels. Genetic deficiency of OPN did not influence radiation-induced rectal damage and was associated with significantly decreased animal survival. The acute and late radiation injury scores were similar in OPN-null mice compared with their control littermates. Conclusion This study shows that in our model and given the pleiotropic actions of OPN in tissue inflammation and fibrosis, further studies are necessary to understand the precise roles of OPN in radiation-induced proctitis and to determine whether OPN is a useful therapeutic tool in prevention of radiation-induced intestinal tissue injury. © 2015, Springer Science+Business Media New York

    Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis

    No full text
    International audienceThe endothelial-to-mesenchymal transition (EndoMT) is a crucial cellular process during heart development necessary to the formation of cardiac valves. This embryonic process reappears in several pathological situations, such as vascular injury or organ fibrosis of various etiologies, as a mediator of extracellular matrix-producing cells. Because radiation induces both vascular damage and fibrosis, we investigated whether radiation exposure induces EndoMT in primary human intestinal microvascular endothelial cells (HIMECs) and whether EndoMT contributes to radiation-induced rectal damage in humans and in a preclinical model of radiation proctitis in mice. Irradiated HIMECs show phenotypic hallmarks of radiation-induced endothelial cell activation in vitro. Moreover, HIMECs undergo changes in molecular expression pattern compatible with EndoMT, with up-regulation of mesenchymal markers and down-regulation of endothelial markers via transforming growth factor/Smad pathway activation. In vivo, EndoMT readily occurs in the human rectum after radiation therapy for rectal adenocarcinoma. Finally, EndoMT was observed in rectal mucosal and submucosal microvessels in a preclinical model of radiation proctitis in Tie2-green fluorescent protein reporter-expressing mice all along radiation proctitis development, also associated with transforming growth factor/Smad pathway activation. In conclusion, radiation-induced cell activation and tissue inflammation constitute a setting that fosters the phenotypic conversion of endothelial cells into mesenchymal cells. Therefore, EndoMT is identified as a potential participant in radiation-induced gut damage and may represent an interesting therapeutic target in cases of radiation-induced pelvic disease. © 2015 American Society for Investigative Pathology

    In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury

    No full text
    International audienceThe pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KO endo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KO endo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1 flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KO endo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68 + cells in irradiated intestinal tissues from PAI-1KO endo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis

    Endothelial Hey2 deletion reduces endothelial-to-mesenchymal transition and mitigates radiation proctitis in mice

    No full text
    International audienceThe current study evaluated the role of Hey2 transcription factor in radiation-induced endothelial-to-mesenchymal transition (EndoMT) and its impact on radiation-induced tissue damage in mice. Phenotypic modifications of irradiated, Hey2 siRNA- and Hey2 vector plasmid-transfected human umbilical vein endothelial cells (HUVECs) resembling EndoMT were monitored by qPCR, immunocytochemistry and western blots. Subsequently, in mice, a Cre-LoxP strategy for inactivation of Hey2 specifically in the endothelium was used to study the biological consequences. Total body irradiation and radiation proctitis were monitored to investigate the impact of conditional Hey2 deletion on intestinal stem cells and microvascular compartment radiosensitivity, EndoMT and rectal damage severity. We found that EndoMT occurs in irradiated HUVECs with concomitant Hey2 mRNA and protein increase. While Hey2 silencing has no effect on radiation-induced EndoMT in vitro, Hey2 overexpression is sufficient to induce phenotypic conversion of endothelial cells. In mice, the conditional deletion of Hey2 reduces EndoMT frequency and the severity of rectal tissue damage. Our data indicate that the reduction in mucosal damage occurs through decline in stem/clonogenic epithelial cell loss mediated by microvascular protection. EndoMT is involved in radiation proctitis and this study demonstrates that a strategy based on the reduction of EndoMT mitigates intestinal tissue damage. © 2017 The Author(s)

    The role of plasmalemma vesicle-associated protein in pathological breakdown of blood–brain and blood–retinal barriers: potential novel therapeutic target for cerebral edema and diabetic macular edema

    No full text
    corecore