292 research outputs found

    Imaging interactions between the immune and cardiovascular systems in vivo by multiphoton microscopy

    Get PDF
    Several recent studies in immunology have used multiphoton laser-scanning microscopy to visualise the induction of an immune response in real time in vivo. These experiments are illuminating the cellular and molecular interactions involved in the induction, maintenance and regulation of immune responses. Similar approaches are being applied in cardiovascular research where there is an increasing body of evidence to support a significant role for the adaptive immune system in vascular disease. As such, we have begun to dissect the role of T lymphocytes in atherosclerosis in real time in vivo. Here, we provide step-by-step guides to the various stages involved in visualising the migration of T cells within a lymph node and their infiltration into inflamed tissues such as atherosclerotic arteries. These methods provide an insight into the mechanisms involved in the activation and function of immune cells in vivo

    Laboratory worker knowledge, attitudes and practices towards smallpox vaccine

    Get PDF
    Background Recent cases of laboratory-acquired vaccinia virus (VV) infection highlight the need for laboratory safety

    In vivo imaging and quantitative analysis of leukocyte directional migration and polarization in inflamed tissue

    Get PDF
    Directional migration of transmigrated leukocytes to the site of injury is a central event in the inflammatory response. Here, we present an in vivo chemotaxis assay enabling the visualization and quantitative analysis of subtype-specific directional motility and polarization of leukocytes in their natural 3D microenvironment. Our technique comprises the combination of i) semi-automated in situ microinjection of chemoattractants or bacteria as local chemotactic stimulus, ii) in vivo near-infrared reflected-light oblique transillumination (RLOT) microscopy for the visualization of leukocyte motility and morphology, and iii) in vivo fluorescence microscopy for the visualization of different leukocyte subpopulations or fluorescence-labeled bacteria. Leukocyte motility parameters are quantified off-line in digitized video sequences using computer-assisted single cell tracking. Here, we show that perivenular microinjection of chemoattractants [macrophage inflammatory protein-1alpha (MIP-1alpha/Ccl3), platelet-activating factor (PAF)] or E. coli into the murine cremaster muscle induces target-oriented intravascular adhesion and transmigration as well as polarization and directional interstitial migration of leukocytes towards the locally administered stimuli. Moreover, we describe a crucial role of Rho kinase for the regulation of directional motility and polarization of transmigrated leukocytes in vivo. Finally, combining in vivo RLOT and fluorescence microscopy in Cx3CR1(gfp/gfp) mice (mice exhibiting green fluorescent protein-labeled monocytes), we are able to demonstrate differences in the migratory behavior of monocytes and neutrophils.Taken together, we propose a novel approach for investigating the mechanisms and spatiotemporal dynamics of subtype-specific motility and polarization of leukocytes during their directional interstitial migration in vivo

    Ocular Vaccinia Infection in Laboratory Worker, Philadelphia, 2004

    Get PDF
    We report a case of ocular vaccinia infection in an unvaccinated laboratory worker. The patient was infected by a unique strain used in an experiment performed partly outside a biosafety cabinet. Vaccination should continue to be recommended, but laboratories with unvaccinated workers should also implement more stringent biosafety practices

    Investigating CTL Mediated Killing with a 3D Cellular Automaton

    Get PDF
    Cytotoxic T lymphocytes (CTLs) are important immune effectors against intra-cellular pathogens. These cells search for infected cells and kill them. Recently developed experimental methods in combination with mathematical models allow for the quantification of the efficacy of CTL killing in vivo and, hence, for the estimation of parameters that characterize the effect of CTL killing on the target cell populations. It is not known how these population-level parameters relate to single-cell properties. To address this question, we developed a three-dimensional cellular automaton model of the region of the spleen where CTL killing takes place. The cellular automaton model describes the movement of different cell populations and their interactions. Cell movement patterns in our cellular automaton model agree with observations from two-photon microscopy. We find that, despite the strong spatial nature of the kinetics in our cellular automaton model, the killing of target cells by CTLs can be described by a term which is linear in the target cell frequency and saturates with respect to the CTL levels. Further, we find that the parameters describing CTL killing on the population level are most strongly impacted by the time a CTL needs to kill a target cell. This suggests that the killing of target cells, rather than their localization, is the limiting step in CTL killing dynamics given reasonable frequencies of CTL. Our analysis identifies additional experimental directions which are of particular importance to interpret estimates of killing rates and could advance our quantitative understanding of CTL killing

    A Role for the Immediate Early Gene Product c-fos in Imprinting T Cells with Short-Term Memory for Signal Summation

    Get PDF
    T cells often make sequential contacts with multiple DCs in the lymph nodes and are likely to be equipped with mechanisms that allow them to sum up the successive signals received. We found that a period of stimulation as short as two hours could imprint on a T cell a “biochemical memory” of that activation signal that persisted for several hours. This was evidenced by more rapid induction of activation markers and earlier commitment to proliferation upon subsequent stimulation, even when that secondary stimulation occurred hours later. Upregulation of the immediate early gene product c-fos, a component of the AP-1 transcription factor, was maximal by 1–2 hours of stimulation, and protein levels remained elevated for several hours after stimulus withdrawal. Moreover, phosphorylated forms of c-fos that are stable and transcriptionally active persisted for a least a day. Upon brief antigenic stimulation in vivo, we also observed a rapid upregulation of c-fos that could be boosted by subsequent stimulation. Accumulation of phosphorylated c-fos may therefore serve as a biochemical fingerprint of previous suboptimal stimulation, leaving the T cell poised to rapidly resume its activation program upon its next encounter with an antigen-bearing DC

    FAST: Towards safe and effective subcutaneous immunotherapy of persistent life-threatening food allergies.

    Get PDF
    To access publisher's full text version of this article. Please click on the hyperlink in Additional Links field.ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused by a single major allergen, parvalbumin (Cyp c 1) and lipid transfer protein (Pru p 3), respectively. Two approaches are being evaluated for achieving hypoallergenicity, i.e. site-directed mutagenesis and chemical modification. The most promising hypoallergens will be produced under GMP conditions. After pre-clinical testing (toxicology testing and efficacy in mouse models), SCIT with alum-absorbed hypoallergens will be evaluated in phase I/IIa and IIb randomized double-blind placebo-controlled (DBPC) clinical trials, with the DBPC food challenge as primary read-out. To understand the underlying immune mechanisms in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold for fish or peach intake, thereby decreasing their anxiety and dependence on rescue medication

    Killing of Targets by CD8+ T Cells in the Mouse Spleen Follows the Law of Mass Action

    Get PDF
    It has been difficult to correlate the quality of CD8 T cell responses with protection against viral infections. To investigate the relationship between efficacy and magnitude of T cell responses, we quantify the rate at which individual CD8 effector and memory T cells kill target cells in the mouse spleen. Using mathematical modeling, we analyze recent data on the loss of target cells pulsed with three different peptides from the mouse lymphocytic choriomeningitis virus (LCMV) in mouse spleens with varying numbers of epitope-specific CD8 T cells. We find that the killing of targets follows the law of mass-action, i.e., the death rate of individual target cells remains proportional to the frequency (or the total number) of specific CD8 T cells in the spleen despite the fact that effector cell densities and effector to target ratios vary about a 1000-fold. The killing rate of LCMV-specific CD8 T cells is largely independent of T cell specificity and differentiation stage. Our results thus allow one to calculate the critical T cell concentration at which growth of a virus with a given replication rate can be prevented from the start of infection by memory CD8 T cell response

    The impact of negative selection on thymocyte migration in the medulla

    Get PDF
    Developing thymocytes are screened for self-reactivity before they exit the thymus, but how thymocytes scan the medulla for self antigens is unclear. Using two-photon microscopy, we observed that medullary thymocytes migrated rapidly and made frequent, transient contacts with dendritic cells. In the presence of a negative selecting ligand, thymocytes slowed, became confined to areas of approximately 30 mum in diameter and had increased contact with dendritic cells surrounding confinement zones. One third of polyclonal medullary thymocytes also showed confined, slower migration and may correspond to autoreactive thymocytes. Our data suggest that many autoreactive thymocytes do not undergo immediate arrest and death after encountering a negative selecting ligand but instead adopt an altered migration program while remaining in the medullary microenvironment

    Behavioral immune landscapes of inflammation.

    Get PDF
    Transcriptional or proteomic profiling of individual cells have revolutionized interpretation of biological phenomena by providing cellular landscapes of healthy and diseased tissues. These approaches, however, fail to describe dynamic scenarios in which cells can change their biochemical properties and downstream “behavioral” outputs every few seconds or minutes. Here, we used 4D live imaging to record tens to hundreds of morpho-kinetic parameters describing the dynamism of individual leukocytes at sites of active inflammation. By analyzing over 100,000 reconstructions of cell shapes and tracks over time, we obtained behavioral descriptors of individual cells and used these high-dimensional datasets to build behavioral landscapes. These landscapes recognized leukocyte identities in the inflamed skin and trachea, and inside blood vessels uncovered a continuum of neutrophil states, including a large, sessile state that was embraced by the underlying endothelium and associated with pathogenic inflammation. Behavioral in vivo screening of thousands of cells from 24 different mouse mutants identified the kinase Fgr as a driver of this pathogenic state, and genetic or pharmacological interference of Fgr protected from inflammatory injury. Thus, behavioral landscapes report unique biological properties of dynamic environments at high cellular, spatial and temporal resolution.pre-print4302 K
    corecore