1,390 research outputs found

    Continuum feedback control of a Rayleigh- Taylor type instability

    Get PDF
    Continuum feedback control of Rayleigh-Taylor instabilit

    Rapid recovery of serratus anterior muscle function after microneurolysis of long thoracic nerve injury

    Get PDF
    BACKGROUND: Injury to the long thoracic nerve is a common cause of winging scapula. When the serratus anterior muscle is unable to function, patients often lose the ability to raise their arm overhead on the affected side. METHODS: Serratus anterior function was restored through decompression, neurolysis, and tetanic electrical stimulation of the long thoracic nerve. This included partial release of constricting middle scalene fibers and microneurolysis of epineurium and perineurium of the long thoracic nerve under magnification. Abduction angle was measured on the day before and the day following surgery. RESULTS: In this retrospective study of 13 neurolysis procedures of the long thoracic nerve, abduction is improved by 10% or greater within one day of surgery. The average improvement was 59° (p < 0.00005). Patients had been suffering from winging scapula for 2 months to 12 years. The improvement in abduction is maintained at last follow-up, and winging is also reduced. CONCLUSION: In a notable number of cases, decompression and neurolysis of the long thoracic nerve leads to rapid improvements in winging scapula and the associated limitations on shoulder movement. The duration of the injury and the speed of improvement lead us to conclude that axonal channel defects can potentially exist that do not lead to Wallerian degeneration and yet cause a clear decrease in function

    Dynamics and stability of ferrofluids, surface interactions

    Get PDF
    Formulation of incompressible ferrohydrodynamics of ferrofluid with nonlinear magnetizatio

    Surgical correction of unsuccessful derotational humeral osteotomy in obstetric brachial plexus palsy: Evidence of the significance of scapular deformity in the pathophysiology of the medial rotation contracture

    Get PDF
    BACKGROUND: The current method of treatment for persistent internal rotation due to the medial rotation contracture in patients with obstetric brachial plexus injury is humeral derotational osteotomy. While this procedure places the arm in a more functional position, it does not attend to the abnormal glenohumeral joint. Poor positioning of the humeral head secondary to elevation and rotation of the scapula and elongated acromion impingement causes functional limitations which are not addressed by derotation of the humerus. Progressive dislocation, caused by the abnormal positioning and shape of the scapula and clavicle, needs to be treated more directly. METHODS: Four patients with Scapular Hypoplasia, Elevation And Rotation (SHEAR) deformity who had undergone unsuccessful humeral osteotomies to treat internal rotation underwent acromion and clavicular osteotomy, ostectomy of the superomedial border of the scapula and posterior capsulorrhaphy in order to relieve the torsion developed in the acromio-clavicular triangle by persistent asymmetric muscle action and medial rotation contracture. RESULTS: Clinical examination shows significant improvement in the functional movement possible for these four children as assessed by the modified Mallet scoring, definitely improving on what was achieved by humeral osteotomy. CONCLUSION: These results reveal the importance of recognizing the presence of scapular hypoplasia, elevation and rotation deformity before deciding on a treatment plan. The Triangle Tilt procedure aims to relieve the forces acting on the shoulder joint and improve the situation of the humeral head in the glenoid. Improvement in glenohumeral positioning should allow for better functional movements of the shoulder, which was seen in all four patients. These dramatic improvements were only possible once the glenohumeral deformity was directly addressed surgically

    DC-conductivity of a suspension of insulating particles with internal rotation

    Full text link
    We analyse the consequences of Quincke rotation on the conductivity of a suspension. Quincke rotation refers to the spontaneous rotation of insulating particles dispersed in a slightly conducting liquid and subject to a high DC electric field: above a critical field, each particle rotates continuously around itself with an axis pointing in any direction perpendicular to the DC field. When the suspension is subject to an electric field lower than the threshold one, the presence of insulating particles in the host liquid decreases the bulk conductivity since the particles form obstacles to ion migration. But for electric fields higher than the critical one, the particles rotate and facilitate ion migration: the effective conductivity of the suspension is increased. We provide a theoretical analysis of the impact of Quincke rotation on the apparent conductivity of a suspension and we present experimental results obtained with a suspension of PMMA particles dispersed in weakly conducting liquids

    Plasma Magnetohydrodynamics and Energy Conversion

    Get PDF
    Contains reports on four research projects.National Science Foundation (Grant G-24073)United States Air Force, Aeronautical Systems Division, Aeronautical Accessories Laboratory, Wright-Patterson Air Force Base (Contract AF33(616)-7624

    Cold Helium Pressurization for Liquid Oxygen / Liquid Methane Propulsion Systems: Fully-Integrated Initial Hot-Fire Test Results

    Get PDF
    A prototype cold helium active pressurization system was incorporated into an existing liquid oxygen (LOX) / liquid methane (LCH4) prototype planetary lander and hot-fire tested to collect vehicle-level performance data. Results from this hot-fire test series were used to validate integrated models of the vehicle helium and propulsion systems and demonstrate system effectiveness for a throttling lander. Pressurization systems vary greatly in complexity and efficiency between vehicles, so a pressurization performance metric was also developed as a means to compare different active pressurization schemes. This implementation of an active repress system is an initial sizing draft. Refined implementations will be tested in the future, improving the general knowledge base for a cryogenic lander-based cold helium system

    Lessons Learned from the Design, Certification, and Operation of the Space Shuttle Integrated Main Propulsion System (IMPS)

    Get PDF
    The Space Shuttle Integrated Main Propulsion System (IMPS) consists of the External Tank (ET), Orbiter Main Propulsion System (MPS), and Space Shuttle Main Engines (SSMEs). The IMPS is tasked with the storage, conditioning, distribution, and combustion of cryogenic liquid hydrogen (LH2) and liquid oxygen (LO2) propellants to provide first and second stage thrust for achieving orbital velocity. The design, certification, and operation of the associated IMPS hardware have produced many lessons learned over the course of the Space Shuttle Program (SSP). A subset of these items will be discussed in this paper for consideration when designing, building, and operating future spacecraft propulsion systems. This paper will focus on lessons learned related to Orbiter MPS and is the first of a planned series to address the subject matter
    • …
    corecore