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A. THERMIONIC EMISSION FROM MONOCRYSTALLINE

IN THE PRESENCE OF CESIUM

TUNGSTEN SURFACES

1. Introduction

The preliminary results of a recently initiated thermionic investigation are reported

here, together with a brief description of our apparatus. The primary purpose of this

study is to attain a better fundamental understanding of the emission processes that occur

at the electrodes of thermionic energy converters.

A well-defined emitter surface is necessary in order to obtain experimental results

of the quality that is most useful in the formulation of a general theory of thermionic

processes. Monocrystalline surfaces are generally accepted as being the best specimens

for such studies, and many investigators have employed them with varying degrees of

success. Two of the most significant experiments are those of Nichols1 and Smith,2

the results of which show that the work function of clean tungsten depends markedly on

the crystallographic structure of the particular surface that is being studied. The close-

packed surfaces generally have the higher work functions, the approximate range for

tungsten being from 4. 65 ev down to 4. 30 ev.

Although much work has been devoted to the study of clean monycrystalline surfaces,

there have been very few quantitative investigations of monocrystalline surfaces that

are partially covered with a layer of adsorbed molecules, a problem of current impor-

tance to thermionic energy conversion and ion propulsion. Qualitative observations

have been made by a number of investigators,3, 4 and Webster 5 has obtained significant

This work was supported in part by the National Science Foundation under Grant
G-24073, and in part by the U.S. Air Force (Aeronautical Systems Division) under Con-
tract AF33(616)-7624 with the Aeronautical Accessories Laboratory, Wright-Patterson
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quantitative results for a few of the most conspicuous crystallographic directions of

several refractory metals. The results show that cesium affects the close-packed planes

most strongly, causing their work functions to be reduced by as much as 3 ev.

There is a definite need for additional research in this area since the existing

theories are incomplete, and the experimental results are insufficient. For this reason,

the present investigation has been designed to study in detail the dependence of the

thermionic properties of tungsten on crystallographic direction, surface temperature,

and cesium density.

2. Apparatus

An experimental tube built by Salomon was modified for the present investigation.

The design is basically a simplification of that used by Nichols.l The test specimen

is a tungsten filament having a diameter of 0. 0049 inch and a length of 14 cm. A long

crystal has been grown in this filament by means of a special heating schedule.4 Crystals

formed in this manner are usually oriented in such a manner that the (110) crystallo-

graphic direction is parallel to the axis of the wire; this means that all crystallographic

directions that are normal to the surface of the filament will have Miller indices of the

form (hhk). Martin 3 has shown that this class of directions includes those of maximum

and minimum emission; therefore it is most desirable for thermionic studies.

The filament is surrounded by a three-piece cylindrical anode (Fig. VIII-1). The

two endpieces are fixed and serve as guard rings, while the center section is rotatable

(by means of magnets) and contains a small slit cut parallel to the axis of the filament.

The diameter of the center section is 1. 9 cm, and the slit dimensions are 0.07 cm by

1.01 cm, so that the subtended angle is approximately 4.230. By applying a strong elec-

tric field between the filament and the three-piece anode, one can cause the electrons

emitted from the surface to be accelerated radially in straight-line paths. The slit acts

as a microscope focused on a small area of the emitting surface, thereby allowing only

the electrons from that area to pass through the slit to be measured at the collector.
-4 2

(The approximate value of this area for the present tube is 4. 65 X 10 cm if the

filament-anode concentricity is perfect.) It is therefore possible, at least in principle,

to measure the emission associated with the different crystallographic directions by

rotating the slit to the appropriate positions.

A schematic of the electrical circuit is included in Fig. VIII-1. A dc power supply

is used to maintain the three-piece anode at a potential of +1000 volts with respect to

the filament. The cylindrical collector is held at potential of only 10 volts above that

of the filament to reduce the undesirable effects of secondary emission. The collector

current is measured with a suitable electrometer.

A cesium reservoir is connected to the experimental tube, and its temperature is

regulated in order to attain the desired density of the cesium vapor. The tungsten
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Fig. VIII-1. Experimental apparatus.

filament is heated directly by ac current, and its temperature is determined simply from

the resistivity, a method that is of questionable accuracy at temperatures less than

1300'K unless the appropriate calibrations and corrections are made.1

3. Results

The tube was evacuated by means of a mercury diffusion-pump system, and a pres-

sure of approximately 10 - 1 0 mm Hg was attained after thorough out-gassing. The fila-

ment was flashed a number of times until the emission pattern appeared to be stable.

The filament temperature was then set at 1610 K, and readings of the collector current

were taken for various slit positions. A portion of the data is shown in Fig. VIII-2, and

its general pattern is similar to those reported by Nichols 1 and Smith. 2 Therefore, by

referring to their work it was possible to estimate the positions of the prominent crys-

tallographic directions along the abscissa. The abscissa actually represents the angular

position of the slit; the pattern in Fig. VIII-2 does not cover the full 360 ° of azimuth,

as its scope was limited to approximately 2100.
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The tube was then sealed off from the vacuum system, and cesium was introduced by

the usual method, that is, breaking a cesium-filled glass capsule in the reservoir. With

the cesium reservoir at room temperature (26°C), the filament temperature was so

adjusted as to obtain maximum emission in the (110) direction. (This temperature is
not known accurately because a detailed calibration has not yet been performed; the esti-

mated value is 700°K.) The resulting emission data for various slit positions are

included in Fig. VIII-2 for comparison with the previous data obtained for bare tungsten.

Since these are preliminary results, a detailed analysis is not warranted at this time.

However, it is interesting to note that:

(i) The presence of cesium causes the maximum emission at 700°K to be as much

as two orders of magnitude greater than that for the bare surface at 1610°K.

(ii) Surfaces having the lowest work function in the presence of cesium are those

that have the highest "bare" work function.

Both of these general observations are in agreement with the results obtained by
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3-5
other investigators. On the basis of these preliminary results, we conclude that the

present technique may be employed now in a more detailed study of emission processes.

4. Future Plans

The filament failed before more reproducible data could be obtained. A new filament

is being prepared, and modifications have been made to reduce the effects of stray cur-

rents caused by leakage, secondary electrons, and photoemission. The immediate plan

is to obtain data for other conditions of emitter temperature and cesium density.

The close cooperation of the members of the Physical Electronics Group of the

Research Laboratory of Electronics has been invaluable throughout this program.

R. E. Stickney

References

1. M. H. Nichols, The thermionic constants of tungsten as a function of crystallo-
graphic direction, Phys. Rev. 57, 297 (1940).

2. G. F. Smith, Thermionic and surface properties of tungsten crystals, Phys.
Rev. 94, 295 (1954).

3. S. T. Martin, On the thermionic and adsorptive properties of the surfaces of a
tungsten single crystal, Phys. Rev. 56, 947 (1939).

4. G. G. Zipfel, S.B. Thesis, Department of Mechanical Engineering, M.I.T.,
1960.

5. H. F. Webster, Thermionic emission from a tantalum crystal in cesium or
rubidium vapor, J. Appl. Phys. 32, 1802 (1961).

6. S. N. Salomon, S.B. Thesis, Department of Mechanical Engineering, M.I.T.,
1961.

B. A-C POWER GENERATION WITH MAGNETOHYDRODYNAMIC CONDUCTION

MACHINES

Magnetohydrodynamic (MHD) power generation is attractive because of the inherent

simplicity of the system. When an ionized gas is used as the working fluid, higher tem-

perature operation is possible with an MHD generator. This makes heat rejection easier

in space applications and increases thermal efficiency in ground-based installations.

In many applications, especially those in which the power is to be processed, it is

desirable to generate ac power. Direct generation of ac power in MHD machines with

ionized gases used as the working fluids has been studied extensively. l The several

theoretical possibilities proposed thus far have been shown to be impractical for opera-

tion with conditions that are characteristic of combustion temperatures, either because

electrical conductivity of the gas is too low or because too much external capacitance is

necessary to provide the reactive power to excite the magnetic field. 1

In this report we describe a new type of ac MHD power generator. It is a conduction
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machine, and all reactive power is handled by inductive energy storages. Moreover,

the criterion for successful operation as a self-excited ac machine is simply that the

machine be suitable for self-excitation as a dc machine.

Although the system is most promising for application to gaseous MHD systems, the

fundamental mechanism of operation will be demonstrated theoretically with an incom-

pressible fluid mode. This is standard practice with many types of MHD conversion

devices. After the system has been analyzed with scalar conductivity assumed, a con-

figuration will be presented which is suitable for gases exhibiting a large Hall effect.

Finally, some estimates of performance will be made for gas properties that are char-

acteristic of temperatures at which gases can be contained by material walls.

1. System with Scalar Conductivity

Consider the system illustrated in Fig. VIII-3. It consists of a channel of constant

cross-section area having the dimensions shown. An incompressible fluid flows with

the velocity T in the direction shown. There are two pairs of electrodes feeding, through

two sets of coils, two identical load resistances R L . The generators formed by the two

pairs of electrodes are assumed to be independent insofar as the fluid is concerned. That

is, end and edge effects are neglected and the two circuits are electrically insulated

NmTURNS

N 22 IR

N RL

TURNS

RL I

Fig. VIII-3. Basic configuration with solid electrodes.
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from each other. Each of the two generators has two magnet coils, one carrying cur-

rent ii and the other carrying current i 2 in the directions indicated. In practice, each

coil would have a second half under the channel with the two connected series-aiding.

Only one-half of each coil is shown in Fig. VIII-3 for simplicity. Although only two sets

of electrodes and coils are shown, the system can have any number of sets. Furthermore,

the sets can be connected for two-phase operation as in Fig. VIII-3 or for operation with

any number of phases. In the last case, the number of coils associated with each pair

of electrodes must be increased, but the essential features of ac operation are the same

as those described below.

Denoting the magnetic flux density B 1 and B 2 in the regions of the two electrodes,

assuming the positive directions shown in Fig. VIII-3, assuming the coils to be distrib-

uted so that the flux densities are essentially uniform over the length f, and assuming

that the coils produce a field just as a long solenoid (or assuming infinitely permeable

pole pieces), we can write

No.0  Nm o .
d1 l d 12

N o . Nm o .B =- + 1 (2)2 d 2 d 1

If we define the internal resistance for one pair of electrodes as

w
Ri- d' (3)i f 'da- 3)

where a is the electrical conductivity of the fluid, we can write the equations for the

two circuits as

dB dB
vwB = Ri 1 + Nfw- + N tw (4)1 dt m dt

dB dB
vwB = Ri 2 + Nw - NmW (5)dt m dt

Here, R is the total series resistance in one circuit (R = RL + R i + R e , where R e is

the resistance of the magnet coils).

Substituting Eqs. 1 and 2 in Eqs. 4 and 5 and simplifying yields

di
Gi - G i = Ri + L dt (6)1 m 2 1 dt

di
Gi + G i = Ri + L d2 (7)in which the parameters dt

in which the parameters G, Gm, and L are defined as
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vw 0 N
d (8)

vwo Nm
G om (9)m d

L = °  (N 2 +N2) . (10)

Elimination of i 2 from Eqs. 6 and 7, after some simplification, yields

d i 2(R-G) di 1  G2 + (R-G) z

dt2  L dt + 2  1=
dt L _ i 0 (11)

This equation has solutions of the form

i 1= I exp L t) cos t + ) , (12)

where I and E are constants to be evaluated from initial conditions. It is clear from
o

the form of this solution that when R > G the response is a damped sinusoid, when R <

G the response is an exponentially growing sinusoid, and when

R = G (13)

the response is a sinusoid of constant amplitude. Reference to Eqs. 6 and 7 shows that

Eq. 13 is the condition for self-excited operation as a de generator.

Henceforth we shall assume that Eq. 13 is satisfied, in which case Eqs. 6 and 7 can

be written

di 1
-G i = L (14)

m2 dt

di
G i L 2 (15)

m1 dt

These equations, used with Eq. 12, show that i 1 and i2 form a two-phase set. That is,

if

i 1 = cos (wmt+O), (16)

Eq. 14 shows that

12 = I sin (wmt+O). (17)

With the system parameters adjusted to satisfy Eq. 13, the system operates in the

steady state with frequency
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G mLm (18)

and with currents of finite amplitude. Consequently, power is dissipated in RL and use-

ful ac power is generated.

Equation 13 is the condition that must be satisfied for self-excitation as a dc gener-

ator with N turns on the field winding, and a coil resistance R c in series with the load.

The addition of the coupling windings N has transformed this pair of self-excited dcm
generators into a two-phase, self-excited ac generator. The price for making the change

to ac operation is the addition of the N -turn coils that occupy space and contribute tom
resistance R . Reactive power is handled completely by the two magnetic storages

c
having flux densities B 1 and B 2 . Note that the two currents have 900 phase difference.

The use of these currents in Eqs. 1 and 2 shows that B1 and B 2 also have 90' phase

difference. Thus the magnetic energy is constant in magnitude and oscillates between

the two magnetic-field storages.

2. Limiting Parameters

Assuming steady-state ac operation, we can use the one-dimensional model in the

analysis above to identify some limiting parameters of the system.

The use of Eqs. 9 and 10 in Eq. 18 yields

vN

mm = . (19)

It will be desirable to operate such a machine at as high a frequency as possible. With

fixed v and I, Eq. 19 has a maximum value when Nm = N (we assume here, of course,

that a minimum of one turn is possible). Thus, we can define the maximum frequency

of operation as

wm = v (20)
m 2N

with the constraint that N = N m
Next, we can assume that RL + R is some multiple of R.; thus

c 1

RL +R = aR. (21)
L c 1

Then, using the definition of R. (Eq. 3) and the condition for self-excitation (Eq. 13), we

obtain

N 1 + a (22)

Note that the denominator of this expression is a magnetic Reynolds number based on
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the length of a pair of electrodes.

Substitution of Eq. 22 in Eq. 20 yields

2
o"Vo - (23)

m 2(1+a)

This result shows that the maximum frequency of operation depends on the conductivity

a-, velocity v, and degree of loading a, and is independent of the size of the device.

To obtain some idea of the conditions that must be satisfied with an ionized gas for

ac power generation of this type, we can use Eq. 23 to calculate values. Assuming a

frequency of 60 cps, we can rewrite Eq. 23 as

2
T-v 6 X 108

+ a

Values of a, a-, and v that satisfy this equation are given in Table VIII-I.

Table VIII-I. Velocity, conductivity, and loading factor for operation at 60 cps.

loading factor a 0 0.5 1.0 2.0

(v m/sec) (a- mhos/meter)

1000 600 900 1200 1800

1500 270 400 530 800

2000 150 230 300 450

2500 96 144 190 290

3000 67 100 130 200

3500 49 74 100 150

4000 37 55 75 110

It is apparent from the numbers in Table VIII-I that there is a chance of using this

type of generator with combustion gases and with gases having increased conductivity

that is due to nonequilibrium effects. At a given velocity and loading factor the required

conductivity varies linearly with frequency. Thus the device will work better at fre-

quencies below 60 cps. For gases at combustion temperatures, high-frequency oper-

ation (such as 400-1000 cps) does not appear possible because of the high velocities

and conductivities required.

The data of Table VIII-I can be used with an assumed length in Eq. 22 to find the

number of turns required. To show that the number of turns is reasonable, assume

f = 1 meter and use a = 1, v = 3000 m/sec, a- = 130 mhos/meter from Table VIII-I to

find N = 4 turns; this value is certainly reasonable for constructing such a device. The
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other conditions of Table VIII-I will yield numbers of turns having the same order of

magnitude.

3. Segmented Electrodes and Tensor Conductivity

It appears from the numbers mentioned in the preceding section that the number of

turns per field coil may be small. For a large generator, the field conductors in such

a system may be so large that eddy currents become a problem. Moreover, if the gas

has tensor conductivity, the solid electrodes will short out the Hall electric fields and

degrade performance.

Both of these deleterious effects can be reduced by using segmented electrodes. The

construction for two electrode segments per generator section is illustrated in

Fig. VIII-4. The essence of this arrangement is that each electrode pair is connected

to a circuit exactly like that for solid electrodes in Fig. VIII-3. The circuit for each

Nm

TURNS / /

N TURNS

STURN / I I /

TURNS, //// \ / / / / /

7-
d

Fig. VIII-4. Configuration for use with segmented electrodes.
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electrode pair is electrically insulated from all other circuits. If many electrode pairs

are used, the power will probably be extracted by inductive coupling to magnetic fields

B 1 and B 2 , or by replacing RL with a transformer winding. In any case, the generation

of ac power with segmented electrodes does not create the problem of having many insu-

lated loads that a dc generator does.

For the analysis assume that there are n electrode segments per generator (of

length 1) and that the coils span a distance f in the flow direction. If each pair of elec-

trodes is assumed to carry the same current as other segments in the same generator

section, then for the flux densities B 1 and B2 (see Eqs. 1 and 2) we can write

nN o . nNmo .
B1 = 1 1 (24)

nNIL, nNp.0nN4o . m o.B d '+ (25)
2 d 12 d (25)

Assuming a one-dimensional model, the internal resistance R! associated with a pair of

electrodes (see Eq. 3) is

Ri = nR. = nw (26)
1 1 f do-

The equations for single electrode pairs in the two generator sections (see Eqs. 4 and

5) are

dB dB
vwB 1 = R'i 1 + Nw 1+ N w B2 (27)

1 dt m dt

dB 2  dB1
vwB 2 =R'i 2 + Nkw dt Nm w dt' (28)

where R' = R + R! + R is the total series resistance in one electrode-pair circuit.

Substituting Eqs. 24 and 25 in Eqs. 27 and 28 and simplifying (see Eqs. 6 and 7)yields

di
Gi -G i =Ri +L 1  (29)

nl Gmn 2 1 n dt

di
Gni2 + Gni = R'i + L 2 (30)

n 2 mn 1 2 n dt

The parameters G n , Gmn' and Ln are defined as

nNpj vw
G d (31)

n d

nNm vw
G = (32)

mn d
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L -o N2+N (33)n d ( mn

For this system self-excitation is achieved when the parameters are adjusted to sat-

isfy the condition

G = R'. (34)n

With this condition satisfied, the frequency of steady-state operation is

GmnS-L (35)
n

By using the definitions of Eqs. 32 and 33, the frequency can be expressed as

vN

S(N2 +NZ)m

This is exactly the same as Eq. 19 for the system with solid electrodes.

The maximum frequency occurs when Nm = N, and isv

m - . (37)m 21N "

Defining the parameter a as

R + R = aR! (38)

we can use the self-excitation condition, Eq. 34, with Eq. 26 to obtain

N- 1 + a (39)

Note that the results of Eqs. 36, 37, and 39 are independent of the number of elec-

trode segments and are the same as Eqs. 19, 20, and 22 for the system with solid elec-

trodes. Thus, all of the discussion of limiting parameters in the preceding section holds

also for the case of segmented electrodes. The only effect of segmenting the electrodes

is to require a number of windings that is equal to the number of electrodes, each winding

having the same number of turns as required by the machine with solid electrodes. Each

winding carries a fraction 1/n of the total current supplied by a generator section; con-

sequently, the volume of field conductor is independent of the number of electrode seg-

ments.

4. Discussion

The generators discussed in this report on an idealized basis indicate the possibility

of their being applicable to systems in which ionized gases are used at temperatures
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that are characteristic of combustion processes. Their advantage is that they generate

alternating current directly and use only magnetic fields for energy storage.

The theory assumes incompressible flow. The basic mechanism still occurs in com-

pressible flow, the velocity being the average flow velocity of the gas. There will be

compressibility effects that need to be evaluated and they may even augment the conver-

sion process.

The generators analyzed here are two-phase machines. By a simple extension of the

concepts we can devise an n-phase machine by having n separate sets of electrodes and

n sets of magnet coils along the channel. A coupling coil is required in each set for

current from every other set of electrodes. No matter how many phases a machine may

have, it can be reduced to an equivalent two-phase machine for analysis. Thus the pres-

ent analysis is complete for a balanced n-phase machine.

H. H. Woodson
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C. ELECTROHYDRODYNAMIC WAVES IN ROTATIONAL SYSTEMS

1i. Introduction

Efforts to achieve a stable magnetohydrodynamic containment have led some inves-
tigators to consider the effect of rotation. From everyday experience, one would suspect

that rotational acceleration, just as the acceleration of gravity, could be responsible

for stabilizing or unstabilizing a system, the choice depending on the configuration.

Common examples are the gravitational or Taylor instability, produced by gravity on a

top-heavy fluid interfacel or the stabilizing influence of gravity in a situation in which a

perpendicular electric field is responsible for a surface instability. 2

However, it is well known that rotational motion is considerably more involved than

this. In addition to the centrifugal forces experienced in pure rotation, particles that

are in motion with respect to a rotating frame respond to a Coriolis acceleration, which

results in a mode splitting that has been well known since the last century in conjunction

with ordinary gravity waves,3 but has been studied in detail only recently. 4
This report is a study of the three types of surface interactions in circular cylin-

drical geometry. The surface not only has an equilibrium curvature, but is also subject

to accelerations associated with a steady rigid-body equilibrium rotation.

There are two reasons for wishing to study systems of this type. The great interest

in stabilizing MH systems in connection with the thermonuclear program has already
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been mentioned. The antiduality of MH and EH systems, which has been pointed

out elsewhere, 5 should serve to show that study of the EH-If system can lead to a

better understanding of the MH counterpart. An experimental investigation of the

EH problem is possible, whereas the MH system can be considered experimentally

only with great difficulty. In the second place, the study of cylindrical field coupled

xx1

S(8, z, t)

REGION (1)

REGION (2)

RIGID WALLS

ROTATING WITH

ANGULAR VELOCITY 0

Fig. VIII-5. Cross section of rotating structure showing dimensions.

systems has always been of primary interest in spite of the fact that it is very

difficult to achieve, experimentally, an equilibrium cylindrical geometry that

approaches the idealization of a cylinder. For example, a jet in free fall changes

in radius radically over a short distance unless the velocity is made high enough

to produce turbulence. In fact, the very velocity of the jet is not a trivial addition

to the dynamics, as has been shown in dealing with the convective systems.

In contrast, here we shall remove the effect of rotational convection by con-

sidering all interactions, both theoretically and experimentally, in the rotating

frame.
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2. Description of Problems

The mechanical configuration that will be considered here is shown in Fig. VIII-5.

The region between two coaxial rigid circular cylinders is filled with two inviscid, incom-

pressible nonmiscible fluids in such a way that they form an equilibrium interface at a

radius R. The cross section is assumed to remain constant. The complete assembly

is then assumed to rotate with an equilibrium rotational velocity 0. It is possible to

produce such a configuration by filling a cylinder with two fluids and rotating the cylinder

fast enough to centrifugally drive the heavier fluid to the outside. The essentially rigid

body rotation that results depends on the centrifugal acceleration being large compared

with the acceleration of gravity. Hence, this last acceleration will be ignored in this

analysis.

Although it is not usual to view them as such, problems of this kind are characterized

by a discrete set of possible transverse modes so that they comprise a type of surface
7

resonator. This is most apparent if there is no axial dependence of the modes con-

sidered. In the experiments described in this report, the technique used to verify the

theoretical considerations will take advantage of this fact. In any case, an experiment

must involve a finite structure so that the axial modes will also be selected from a dis-

crete set of wave numbers.

Here, both EH-I and EH-II interactions will be considered. The type EH-1 inter-

action is produced by an electric field that, in general, is in the radial direction. The

EH-Ip is produced by equipotentials on the inner and outer cylinders because the region

between would be filled with dielectric. However, in the EH-If interaction either the

inner or outer cylinder can form one of the equipotentials, while the other might be

formed by the interface. For the EH-II interaction, the inner and outer cylinders must

be dielectrics, with the electric field imposed by parallel plates that are perpendicular

to the z-axis. The types of velocity and electric fields to be considered are given by

V = V, 1 + (Qr+V) 2 + V(1)

EH-If -VEH-Ip E = (v+e) + e2a2 + e3a3

EH-II} E = ela 1 + e2a2 + (Eo+e3 (2)

3. E-H Equations of Motion

The EH bulk equations will be taken as

V v' = 0 (3)

DV'(4)
p V + Vp' = 0 (4)
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VX E = 0 (5)

V EE = 0, (6)

where p' is the total pressure given by

1 2
p' = P +-EE 22

The primes denote quantities evaluated in the rest frame. The velocities of interest

are not large enough to require any distinction between frames for the electric fields.

It is apparent that the mechanics would be considerably simplified by viewing the

motion from the rotating frame. For this reason, Eqs. 3 and 4 will now be transformed

to the rotating frame. This is accomplished by the transformation

r = r' V1 = V

e = e' - 2t V2 = V + Or

(7)
z = z' p' = P + p

t = t'

If only linear terms are retained, the momentum and continuity equations require

1 22
po =2 pz r2 + constant (8)

av v a ()
P L 1t - ZO IV2 + -5 = 0 (9)

[t 1 1 r 80

av (11)

at +z

BrV V av
1 11 2 3

+ + 0. (12)r r r 89 8z

The terms in these equations are those that would be observed by a rotating observer.

The usual techniques are now used to handle these equations. The total pressure is

used as a potential for deriving the other mechanical variables, while the axial elec-

tric field is used to determine the remaining field components.

Because of the cylindrical geometry, the eigenvalues satisfying the axial boundary

conditions can be chosen from those given by the assumed solution,

p ej(wt+mO+kz) (13)
p :pe.(I3
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Here, w is the frequency as viewed in the moving frame. In all present considerations

care will be taken to excite and measure all frequencies in the moving frame.

If the surface of the interface is to be continuous azimuthally, the eigenvalue m must

have integer values. The wave number k will be determined in the usual way from the

boundary conditions in the axial direction.

The assumed solution reduces the bulk equations of motion given by Eqs. 5, 6, and

9-12 to a pair of ordinary differential equations that define all of the remaining functions.

2,
2 d 2 p dp Z Z Z

r d 2 + r-- - [m 2 +r 2 k 2  = 0, (14)
dr

where

2
2

1 dr de3 m 2  2 0.
rdr \d/ e + k = 0. (15)r dr dr 3 2r

Here, in terms of ^ and e'3, the remaining functions are

j d^ 2jmQ2
V - + (16)

1 A 2 Adr 2 2 r
pwa / 2  c

^ -m 20 dp
V 2 = ) (17)

2 pA2 A 2 p2 dr
A _

-kp
V 3  p (18)

m e3
e2  \ (19)

-j dG3
e 1  k d (20)

1 k dr

It is convenient to use as solutions to Eqs. 14 and 15 the Bessel function of first kind

and the Hankel function of first kind.

p = A 1 J (jkAr) + A 2 Hm(jkAr) (Z1)

3 = C 1Jm(jkr) + C 2 Hm(jkr). (22)

However, we note the important fact that the arguments of these functions as

they occur in all of the mechanical variables depend on both the frequency w and the
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wave number k. This is the salient complication of the rotation.

The surface dynamics are represented in terms of the unit normal, n, directed in

the positive r direction in equilibrium, and the surface displacement a(e, z, t) from an

equilibrium position R.

D [r-(g(e, z, t)+R)] = 0. (23)

Remember that is the surface perturbation as viewed in the fixed frame. Hence, Eq. 21

must be transformed to the rotating frame in which it takes on the expected nonconvective

form

A

jV1=-- (24)

The normal vector does not depend on rates of change with respect to time, and is there-

fore unaffected by the transformation to the rotating frame of reference. Hence

^ -m ^
n V

2 Rwc
(25)

^ -k ^

3  V 1

The boundary conditions are given here for convenience. They are of the same form

as those used in conjunction with variables defined in the inertial frame because the

transformation of all of the variables involved in the boundary conditions (see Eq. 7) is

one to one. Hence, the definition of the interface and the conservation of momentum

at the interface require that

-f-(. = 0 (26)

naT - + - n,[T(-T(] = 0, (27)a R z J a aJ

where T is the surface tension, and Tap is the total stress tensor given by

TE E

Tap EaE -6a 2 + j

Also, the tangential component of the electric field must be continuous at the interface.

n X [E(2)-E(i)] = 0. (28)

If there is no free charge on the interface, a type I interaction requires the use of the

additional condition

n• [E(2)T(2)- (1)E ( 1 ) ] - 0. (29)
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At r = a, b, the normal velocity must vanish because of the condition imposed by a rigid

boundary. In the EH-II interaction it is assumed that these boundaries are composed of

a dielectric material so that it is possible to support an axial electric field that is uni-

form in the unperturbed state. The walls are assumed to have the same dielectric prop-

erties as the adjacent fluid dielectric, so that there is no polarization charge or Korteweg

current on the rigid boundaries. On the other hand, the type I interactions are assumed

to result from equipotentials at r = a, b; and this requires that e 3 = 0 there.

4. Dispersion Equations

The technique of finding the dispersion equations that are consistent with perturba-

tions of the form of Eq. 13 is now straightforward. Equations 16-20, 24, and 25 make

it possible to evaluate all of the dependent variables in terms of the solutions given by

Eqs. 21 and 22, that is, in terms of eight constants, A ) A ) C C ), A Z ) A2)

C C2). (The superscripts denote the region in which the variable is to be evaluated.)

The dispersion relation for each of the problems is the compatibility condition of

these eight constants in the equations resulting when the solutions are substituted in the

boundary conditions of Eqs. 26-29.

The cylindrical geometry poses the complication of a radial dependence for the equi-

librium pressure field; and in the type I interactions, a radial dependence for the equi-

librium electric fields. Hence, in this linear analysis, these respective fields must be

written in the form

P = constant + - p2 (R+ )2 + p(r, e, z, t)1

constant + p2 (RZ+2Re) + p(r, 6, z, t) (30)

E v + e v + e (31)
1 (R+ 1R) R 2  1(31)

(R+g) R

Investigation shows that for the EH-If interaction, Eqs. 26-29 are linear combina-

tions of Eqs. 26, (27)1, (27) 3 , (28)2 and the condition that v 1 = 0 at r = a, b. One of

these equations ceases to be independent in the limit where there is no free charge on

the interface. In this case (the EH-Ip interaction) Eq. (27)3 is replaced by Eq. 29.

The EH-II interaction is defined by Eqs. 26, (27)1, (27) 3 , 28, and the condition that

v 1 = 0 at r = a, b. It is assumed that all electromagnetic perturbation fields are finite

at infinity and at the origin. This last condition replaces two equations, in that it requires

C = CM = 0. The dispersion equations for each of the three problems can be sum-

marized as follows:

S 2 T {(kR) -(1-mZ)+F+G}, (32)
R Peq
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where

F=-T 2 P

Peq = A[p()Pm(jkAa, jkAR)-p ( 2 )Pm(jkAb, jkAR)

Pi J (y ) L m (x)

m jkR L m(x) Qm(y )

2m2
Q (x) = J' (x) +

m W

- m(X) H ( y )

Qm() L(y)

Jm (x)
x

2m2 H m(X)
L m (x ) = H' (x) +m m ( x

Sm(kR , kb) = jkR

Tm(kR, ka) =

H' (jkR) J (jkb)m m

kR ILF

- H m(jkb) J' (jkR)m m

Hm (jkR) J m(jkb) - J m(jkR) Hm ( j k b )

J' (jkR) Hm(jka) - Jm(jka) H' (jkR)

J" J(jkR) H (jka)

f

- J (jka) Hm (jkR)

A= i_42
2w

for all of the problems,

sidered.

EH-If

but G depends on the type of interaction that is con-

G = r(2)[Sm(kR, kb)+l] - r(1)[Tm(kR, ka)+l]

2

RT'

EH-Ip

v(1) (Z)(E(2) E(1)) z

G RT kb T (k)
S() (2)

Sm(kR,kb) Tm(kR, ka)

+ E(2)((2))
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EH-II

( (2) -(1) (Rk)2 E2R

T ()(jkR) kR) J' (jkR) H' (jkR)

Jm(jkR) H m (jkR)

If modes of motion are considered that have no z dependence, then the dispersion

equations take a simple and convenient form that is quadratic in the frequency o. To

show this, it is recognized that as k - 0 (or as perturbations in the axial direction assume

an infinite wave length),

Tm(kR, ka)- m

Sm(kR, kb) - m

1
P (x, y) --m mA

(33)

y Zm 2

-1

and the dispersion equations become

A(-2 + 2B(-)+ C + (1-m 2 ) - F = 0,

m 1
(1) + (2))

2m 1

F
A=

m p(2) (1)
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EH-If

2Bm +t: 1 R2m + 1
c2-m Rm 1

Ga!-

EH-Ip

c2 ( (Z) (1) (2)\ )( 2

C = 0.

Note that for a given mode (a given integer value of m) A, B, and C are constants

fixed by the physical parameters and the geometry. For each mode, there are two pos-

sible frequencies of oscillation. In the limit 2 -0, these two values of wo approach the

same value. Hence, the effect of the rotation is to split the possible resonant frequencies

into disparate pairs. The EH-II waves couple to the electric field only if the direction

of propagation is in the direction of the equilibrium electric field. It is therefore not

surprising that the electric field has no influence on the resonant frequency of the type II

resonator if there is no axial dependence of the surface deformations.

5. Experiment

The EH-If waves discussed in the previous sections are being investigated by using

the apparatus shown in Fig. VIII-6. The detailed drawing shows the resonator that is

rotated with the frequency . This rotation is provided by a dc motor equipped with a

feedback loop for speed control. (The measurement of the resonant frequency w is sen-

sitive enough to require a speed controlled to four significant figures.) The speed is

measured within 1/8 of a revolution with a 10-sec sample time, as shown in Fig. VIII-6.

An excitation of the surface waves was provided by torque pulsations from a dc motor

with its field excited by a square wave having a repetition rate w/ZTr. Because the oscil-

lator that generated the square wave operates at 16 times the frequency o, it is possible

to measure the excitation frequency to four places, by using a 10-sec sample time.

The low-frequency m = 1 and m = 2 modes have been measured by using a cylinder

of length 8.75 in. with a = 0.5 in., b = 1.867 in. and R = 1.31 in. Although frequency

shifts with electric field have been observed (they are small), attention has been con-

fined thus far to attempting to understand the waves without field coupling. Figure VIII-7
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shows typical data with no electric field. It can be seen that the experiment justifies the

mechanical model used (at least for the prediction of the resonant frequency). The solid

lines were drawn by using Eq. 34. The surface waves are excited on the interface of

the fluid by a thin rubber "flapper" that is attached to the outer wall as shown in

Fig. VIII-6. The rotational pulsations of the cylinder then set the fluid into a slight

motion which is observed under stroboscopic light. An extremely sensitive indication

of resonance is given when the resonant motions of the interface are accompanied by no

deflection of the flapper. It is at this frequency that the flapper does not inhibit the

motion of the fluid, and hence "pull" the resonant frequency.

J. R. Melcher
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D. MAGNETOACOUSTIC-WAVE EXPERIMENT

1. Introduction

It has been shown by Haus 1 that it is theoretically possible to use magnetoacoustic

waves to convert kinetic power of a flowing plasma to ac electrical power by means of

an external, magnetically coupled circuit. In order for this amplifying interaction to

occur, the following conditions must be satisfied: (a) the plasma must be flowing through

a region of constant applied transverse magnetic field; (b) the flow velocity must be

greater than the magnetoacoustic wave velocity, and (c) the plasma electrical conduc-

tivity must be sufficiently large to permit the waves to amplify as they propagate.

An experiment has been devised to try to produce a plasma in a system satisfying

these conditions. The system is a homopolar device (see Fig. VIII-8) in which a

gas is heated and accelerated electrically in a uniform externally applied magnetic field.

We are trying to determine whether or not the resulting rotating plasma will satisfy the

above-given conditions.

In recent years there has been a growing interest in rotating plasmas for such uses

as fast discharge capacitors, 2 arc gas heaters for wind-tunnel or materials studies, 3
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Fig. VIII-8. Homopolar device.

and for basic studies in plasma physics. 4 In each of the cases reported the magnetic

field was so large that the flow velocity was less than the magnetoacoustic-wave propa-

gation velocity. Furthermore, there were no attempts to study magnetoacoustic waves.

Nevertheless these studies have provided a useful starting point and some theoretical

framework for the experiments reported on here. Some initial experiments will be

described in which the objective was to produce a plasma satisfying the conditions dis-

cussed above.

2. Description of Experiment

The apparatus for the experiment is shown in Fig. VIII-9. The channel (Fig. VIII-10)

consists of two concentric circular brass rings. The top and bottom cover plates are

either glass or Plexiglas. The inside surfaces of the brass electrodes are notched near

the insulating walls and coated with sauereisen, a high-temperature porcelainlike mate-

rial, in an attempt to confine the plasma away from the insulating walls. The electrode

currents are carried by 4 radial arms that join at the axis beneath the electrodes. The

chamber is sealed by 4 neoprene O-rings. No external support is required for the cover

plates once the chamber is evacuated. The axial magnetic field is produced by two con-

certric coils connected in series; the field in the region between the coils is uniform

within ±5 per cent. Five taps are provided on each coil to vary the amount of inductance

from 3-30 mh. The energy for powering the field coils and the plasma is supplied by

an 800-p f, 4-kv capacitor bank. The duration of an experiment is 10 msec, or less,

depending on the parameters of the system, so that no external cooling is necessary

for either the coils or channel. The switching elements used in the experiments are

type 5550 ignitrons, which are air-cooled and rated at 12 kv and 20 coulombs for pulse
5

work, or, for example, 20, 000 amps for 1 msec. The ignitron igniters are excited

by 5C22 hydrogen thyratrons that are fired by delay circuits and pulse-forming net-

works. See Fig. VIII-11.

The channel is evacuated to approximately 1 4 Hg pressure before each firing and
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Fig. VIII-9. Rotating-plasma apparatus.

backfilled to the desired pressure with the working fluid. Most of the experiments were

performed with helium in the pressure range 0.5-10 mm Hg. At pressures much out of

this range it was not possible to break down the gas with the available capacitor bank

when an external magnetic field was applied.

Several channel configurations had been used in previous experiments, which formed

the basis for the present design. Two circuit configurations have been studied: (a) a series

connection in which the field coils are in series with the plasma and (b) separately

excited circuits in which the channel and field coils are pulsed from separate capacitor

banks. The series arrangement has the advantages that it (a) uses the coil inductance

for current limiting, (b) provides a reasonably long discharge time and (c) produces

high magnetic fields. A peak discharge current of 1400 amps and magnetic field of

15, 000 gauss is possible with a discharge time of 5 msec. At lower field and discharge

currents an arc is observed to accelerate azimuthally until a point is reached at which
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Fig. VIII-10. Channel with field coils removed.

time the arc suddenly switches mode and becomes diffuse for most of the remainder of

the discharge. The current, voltage, and light intensity are illustrated in Fig. VIII-12.

The only noted effect of pressure changes in the range 0.5-10 mm Hg was that the plasma

was not diffuse as long during the discharge time at the higher pressures. From the

I------------------------------- ------- ~

PPYf, 2K FROM DELAY

KV + 5C 22 CIRCUIT

I I PULSE TRANSFORMER
L

Fig. VIII------------------. Typical ignitron firing circuit.
Fig. VIII- 1. Typical ignitron firing circuit.
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voltage and current traces the voltage is quite nearly proportional to the current. This

would be true, for example, if the voltage was produced by a v X B back emf if we assume

a limiting velocity for the plasma. The velocity corresponding to the values given is of

the order of the ionization energy velocity, a result shown by others. 6, 7 Attempts to

short-circuit the plasma to measure the charge stored in the plasma capacitor, however,

did not show any measurable stored charge.

If the inductance of the field coils is reduced, then with a peak field of 6500 gauss

and a discharge current of 600 amps, short-circuiting the plasma resulted in the recov-

ery of approximately 100 pcoulomb of charge. This is equivalent to an ionization of

0. 1 per cent (or n = 1013 ions/cc) if it is assumed that the rotational energy of the ions

is of the order of the ionization energy. Observations of the light intensity indicate that

at the higher currents and magnetic fields the rotating arc phase of the discharge no

longer appears.

With the separately excited configuration used and with a current-limiting resistor

of 0. 6 ohm in the plasma circuit, experiments indicate that the plasma again exhibits

capacitive properties (Fig. VIII-12c). In these experiments the magnetic field is first

established by part of the capacitor bank and the remainder of the bank is discharged

into the channel when the field is maximum.

At the present time we are proceeding with instrumentation to determine conditions

experimentally in the rotating plasma. Attempts to launch magnetoacoustic waves in

the rotating plasma have been inconclusive.

F. D. Ketterer
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