30 research outputs found

    Fatto Con cura Made with care

    No full text
    Il valore del gesto e del contributo individuale al successo di un’azienda. Un approfondito lavoro di incontri, ascolti e interviste. Una corposa raccolta di materiale, prima di tutto umano. Una miscela di parole, ricordi e affetto da cui emerge la costante voglia del far bene, di realizzare prodotti a regola d’arte, di sentirli propri, di farli con cura

    Preliminary characterization of pharmacodynamic biomarkers for LR-peptide growth inhibition of ovarian cancer (OC) cells models.

    No full text
    To translate newest research results into the clinical day soon, to analyse data and trials according to the criteria of evidence based medicine and put them in a global context. Presentation of practice-oriented update in diagnosis, treatment as well as follow-up

    Spermidine/spermine N1-acetyltransferase transient over-expression restores sensitivity of resistant human ovarian cancer cells to N1,N12-bis(ethyl)spermine and to cisplatin

    No full text
    The limited induction of spermidine/spermine N1-acetyltransferase (SSAT) activity has been implicated as an important determinant of the reduced response, to the spermine analogue N1,N12-bis(ethyl)spermine (BESpm) by the cisplatin (cDDP)-resistant human ovarian carcinoma cell line (C13*). We checked whether under conditions of SSAT over-expression, enzyme induction and cell sensitivity to both BESpm and cDDP were restored to levels comparable with those of more responsive cDDP-sensitive 2008 cells. We transiently transfected the SSAT repressed C13* cells with two expression vectors driving human SSAT over-expression by diverse promoters, and then we analysed their responses in the absence and in the presence of BESpm. SSAT activity was promptly but briefly expressed by transfection with both pOP/SSAT and pCMV-SSAT plasmids. However, only in the presence of BESpm, did SSAT activity reach the highest levels of induction for longer times, with different time-courses for the two vectors, which paralleled the effect on cell growth. Under these conditions, growth sensitivity to BESpm of the less-responsive C13* cells was 25% reverted to cell growth inhibition displayed by 2008 cells. More interestingly, the sensitivity to cDDP cytotoxicity also increased in parallel to SSAT over-expression. BESpm induction of pCMV-SSAT-transfected cells caused a further 20-30% reduction of cell survival induced by cDDP, almost recovering the sensitivity of 2008 cells. The enhanced effectiveness of cDDP was also confirmed by the comet assay, showing an increase in the number and length of tails of damaged DNA. These findings confirm that SSAT over-expression inhibits cell growth and enhances growth sensitivity to BESpm in C13* cells, showing for the first time that restoring high inducibility of SSAT activity subverts the reduced sensitivity to cDDP of SSAT-deficient cells, making them almost indistinguishable from the responsive parental 2008 cells

    Identification of a Quinone Derivative as a YAP/TEAD Activity Modulator from a Repurposing Library

    No full text
    The transcriptional regulators YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) are the major downstream effectors in the Hippo pathway and are involved in cancer progression through modulation of the activity of TEAD (transcriptional enhanced associate domain) transcription factors. To exploit the advantages of drug repurposing in the search of new drugs, we developed a similar approach for the identification of new hits interfering with TEAD target gene expression. In our study, a 27member in-house library was assembled, characterized, and screened for its cancer cell growth inhibition effect. In a secondary luciferase-based assay, only seven compounds confirmed their specific involvement in TEAD activity. IA5 bearing a p-quinoid structure reduced the cytoplasmic level of phosphorylated YAP and the YAP–TEAD complex transcriptional activity and reduced cancer cell growth. IA5 is a promising hit compound for TEAD activity modulator development

    Characterization of the cell growth inhibitory effects of a novel DNA-intercalating bipyridyl-thiourea-Pt(II) complex in cisplatin-sensitive and-resistant human ovarian cancer cells.

    No full text
    The cellular effects of a novel DNA-intercalatingagent, the bipyridyl complex of platinum(II) with diphenylthiourea, [Pt(bipy)(Ph2-tu)2]Cl2, has been analyzed in thecisplatin (cDDP)—sensitive human ovarian carcinoma cellline, 2008, and its—resistant variant, C13* cells, in which thehighest accumulation and cytotoxicity was found among sixrelated bipyridyl thiourea complexes. We also show here thatthis complex causes reactive oxygen species to form andinhibits topoisomerase II activity to a greater extent in thesensitive than in the resistant line. The impairment of thisenzyme led to DNA damage, as shown by the comet assay.As a consequence, cell cycle distribution has also beengreatly perturbed in both lines. Morphological analysisrevealed deep cellular derangement with the presence of cellular masses, together with increased membrane permeability and depolarization of the mitochondrial membrane. Some of these effects, sometimes differentially evident between the two cell lines, might also be related to the decrease of total cell magnesium content caused by this thiourea complex both in sensitive and resistant cells, though the basal content of this ion was higher in the cDDP-resistant line. Altogether these results suggest that this compound exerts its cytotoxicity by mechanisms partly mediated by the resistance phenotype. In particular, cDDP-sensitive cells were affected mostly by impairing topoisomerase II activity and by increasing membrane permeability and the formation of reactive oxygen species; conversely, mitochondrial impairment appeared to play the most important role in the action of complex F in resistant cells

    Characterization of the cell growth inhibitory effects of a novel DNA-intercalating bipyridyl-thiourea-Pt(II) complex in cisplatin-sensitive and-resistant human ovarian cancer cells.

    No full text
    The cellular effects of a novel DNA-intercalating agent, the bipyridyl complex of platinum(II) with diphenyl thiourea, [Pt(bipy)(Ph(2)-tu)(2)]Cl(2), has been analyzed in the cisplatin (cDDP)-sensitive human ovarian carcinoma cell line, 2008, and its -resistant variant, C13* cells, in which the highest accumulation and cytotoxicity was found among six related bipyridyl thiourea complexes. We also show here that this complex causes reactive oxygen species to form and inhibits topoisomerase II activity to a greater extent in the sensitive than in the resistant line. The impairment of this enzyme led to DNA damage, as shown by the comet assay. As a consequence, cell cycle distribution has also been greatly perturbed in both lines. Morphological analysis revealed deep cellular derangement with the presence of cellular masses, together with increased membrane permeability and depolarization of the mitochondrial membrane. Some of these effects, sometimes differentially evident between the two cell lines, might also be related to the decrease of total cell magnesium content caused by this thiourea complex both in sensitive and resistant cells, though the basal content of this ion was higher in the cDDP-resistant line. Altogether these results suggest that this compound exerts its cytotoxicity by mechanisms partly mediated by the resistance phenotype. In particular, cDDP-sensitive cells were affected mostly by impairing topoisomerase II activity and by increasing membrane permeability and the formation of reactive oxygen species; conversely, mitochondrial impairment appeared to play the most important role in the action of complex F in resistant cells

    Optimization of Peptides That Target Human Thymidylate Synthase to Inhibit Ovarian Cancer Cell Growth

    No full text
    Thymidylate synthase (TS) is a target for pemetrexed and the prodrug 5-fluorouracil (5-FU) that inhibit the protein by binding at its active site. Prolonged administration of these drugs causes TS overexpression, leading to drug resistance. The peptide lead, LR (LSCQLYQR), allosterically stabilizes the inactive form of the protein and inhibits ovarian cancer (OC) cell growth with stable TS and decreased dihydrofolate reductase (DHFR) expression. To improve TS inhibition and the anticancer effect, we have developed 35 peptides by modifying the lead. The D-glutamine-modified peptide displayed the best inhibition of cisplatin-sensitive and -resistant OC cell growth, was more active than LR and 5-FU, and showed a TS/DHFR expression pattern similar to LR. Circular dichroism spectroscopy and molecular dynamics studies provided a molecular-level rationale for the differences in structural preferences and the enzyme inhibitory activities. By combining target inhibition studies and the modulation pattern of associated proteins, this work avenues a concept to develop more specific inhibitors of OC cell growth and drug leads
    corecore