676 research outputs found

    Two body non-leptonic Λb\Lambda_b decays in quark model with factorization ansatz

    Full text link
    The two body non-leptonic Λb\Lambda_b decays are analyzed in factorization approximation, using quark model, ξ=1/Nc\xi = 1 / N_c as a free parameter. It is shown that the experimental branching ratio for ΛbΛJ/ψ\Lambda_b \longrightarrow \Lambda {J/\psi} restricts ξ\xi and this ratio can be understood for a value of ξ\xi which lies in the range 0ξ0.5 0 \leq \xi \leq 0.5 suggested by two body B meson decays. The branching ratios for ΛbΛcDs(Ds)\Lambda_b \longrightarrow \Lambda_{c} D^*_s(D_s) are predicted to be larger than the previous estimates. Finally it is pointed that CKM-Wolfenstein parameter ρ2+η2\rho^2 + \eta^2, where η\eta is CP phase, can be determined from the ratio of widths of ΛbΛDˉ\Lambda_b \longrightarrow \Lambda \bar{D} and ΛbΛJ/ψ\Lambda_b \longrightarrow \Lambda {J/\psi} or that of ΛbpDs\Lambda_b \longrightarrow p D_s and ΛbΛcDs\Lambda_b \longrightarrow \Lambda_c D_s independent of the parameter ξ\xi.Comment: 18 pages, latex, 1 figure available on request, please send any questions or comments to [email protected]

    Renormalizabilty of TH Heavy Quark Effective Theory

    Full text link
    We show that the Heavy Quark Effective Theory is renormalizable perturbatively. We also show that there exist renormalization schemes in which the infinite quark mass limit of any QCD Green function is exactly given by the corresponding Green function of the Heavy Quark Effective Theory. All this is accomplished while preserving BRS invariance.Comment: LATEX/10 pages/ UAB-FT-314/ (References have been added.) figures (PS) available on request. Unfortunately some mails asking for copies by conventional mail were lost. Please resend request

    Loop-Less Electric Dipole Moment of the Nucleon in the Standard Model

    Full text link
    We point out that the electric dipole moment of the neutron in the Standard Model is generated already at tree level to the second order in the weak interactions due to bound-state effects, without short-distance Penguin loops. The related contribution has a regular nonvanishing chiral limit and does not depend on the mass splitting between s and d quarks. We estimate it to be roughly 10^(-31)e*cm and expect a more accurate evaluation in the future. We comment on the connection between d_n and the direct CP-violation in D decays.Comment: 10 pages, 2 figure

    QCD-based description of one-particle inclusive B decays

    Get PDF
    We discuss one-particle inclusive B decays in the limit of heavy b and c quarks. Using the large-N_C limit we factorize the non-leptonic matrix elements, and we employ a short distance expansion. Modeling the remaining nonperturbative matrix elements we obtain predictions for various decay channels and compare them with existing data.Comment: LaTeX, 22 pages, 6 figures (eps); analytical and numerical results unchanged, misrepresentation of experimental data in Fig. 5 corrected, final published versio

    One-particle inclusive CP asymmetries

    Full text link
    One-particle inclusive CP asymmetries in the decays of the type B -> D(*) X are considered in the framework of a QCD based method to calculate the rates for one-particle inclusive decays.Comment: Latex, 13 pages, 6 figures (eps). Analytical and numerical results unchanged, extended discussion of model assumptions and systematic uncertainties. Version to be published in Phys. Rev. D 62, 0960xx. Additional transparencies are available via the WWW at http://www-ttp.physik.uni-karlsruhe.de/Slides

    A heavy quark effective field lagrangian keeping particle and antiparticle mixed sectors

    Get PDF
    We derive a tree-level heavy quark effective Lagrangian keeping particle-antiparticle mixed sectors allowing for heavy quark-antiquark pair annihilation and creation. However, when removing the unwanted degrees of freedom from the effective Lagrangian one has to be careful in using the classical equations of motion obeyed by the effective fields in order to get a convergent expansion on the reciprocal of the heavy quark mass. Then the application of the effective theory to such hard processes should be sensible for special kinematic regimes as for example heavy quark pair production near threshold.Comment: LaTeX, 14 pages, 1 EPS figure

    Large NcN_c Universality of The Baryon Isgur--Wise Form Factor: The Group Theoretical Approach

    Get PDF
    In a previous article, it has been proved under the framework of chiral soliton model that the same Isgur--Wise form factor describes the semileptonic ΛbΛc\Lambda_b\to\Lambda_c and Σb()Σc()\Sigma^{(*)}_b\to\Sigma^{(*)}_c decays in the large NcN_c limit. It is shown here that this result is in fact independent of the chiral soliton model and is solely the consequence of the spin-flavor SU(4) symmetry which arises in the baryon sector in the large NcN_c limit.Comment: 10 pages in REVTeX, no figure

    The eta' in baryon chiral perturbation theory

    Full text link
    We include in a systematic way the eta' in baryon chiral perturbation theory. The most general relativistic effective Lagrangian describing the interaction of the lowest lying baryon octet with the Goldstone boson octet and the eta' is presented up to linear order in the derivative expansion and its heavy baryon limit is obtained. As explicit examples, we calculate the baryon masses and the pi N sigma-term up to one-loop order in the heavy baryon formulation. A systematic expansion in the meson masses is possible, and appearing divergences are renormalized.Comment: 16 pages, 2 figure

    The footprint of cometary dust analogs: I. Laboratory experiments of low-velocity impacts and comparison with Rosetta data

    Full text link
    Cometary dust provides a unique window on dust growth mechanisms during the onset of planet formation. Measurements by the Rosetta spacecraft show that the dust in the coma of comet 67P/Churyumov-Gerasimenko has a granular structure at size scales from sub-um up to several hundreds of um, indicating hierarchical growth took place across these size scales. However, these dust particles may have been modified during their collection by the spacecraft instruments. Here we present the results of laboratory experiments that simulate the impact of dust on the collection surfaces of COSIMA and MIDAS, instruments onboard the Rosetta spacecraft. We map the size and structure of the footprints left by the dust particles as a function of their initial size (up to several hundred um) and velocity (up to 6 m/s). We find that in most collisions, only part of the dust particle is left on the target; velocity is the main driver of the appearance of these deposits. A boundary between sticking/bouncing and fragmentation as an outcome of the particle-target collision is found at v ~ 2 m/s. For velocities below this value, particles either stick and leave a single deposit on the target plate, or bounce, leaving a shallow footprint of monomers. At velocities > 2 m/s and sizes > 80 um, particles fragment upon collision, transferring up to 50 per cent of their mass in a rubble-pile-like deposit on the target plate. The amount of mass transferred increases with the impact velocity. The morphologies of the deposits are qualitatively similar to those found by the COSIMA instrument.Comment: 14 pages, 12 figures, accepted for publication in MNRA
    corecore