178 research outputs found
Weak KAM for commuting Hamiltonians
For two commuting Tonelli Hamiltonians, we recover the commutation of the
Lax-Oleinik semi-groups, a result of Barles and Tourin ([BT01]), using a direct
geometrical method (Stoke's theorem). We also obtain a "generalization" of a
theorem of Maderna ([Mad02]). More precisely, we prove that if the phase space
is the cotangent of a compact manifold then the weak KAM solutions (or
viscosity solutions of the critical stationary Hamilton-Jacobi equation) for G
and for H are the same. As a corrolary we obtain the equality of the Aubry
sets, of the Peierls barrier and of flat parts of Mather's functions.
This is also related to works of Sorrentino ([Sor09]) and Bernard ([Ber07b]).Comment: 23 pages, accepted for publication in NonLinearity (january 29th
2010). Minor corrections, fifth part added on Mather's function (or
effective Hamiltonian
Tackling amyloidogenesis in Alzheimer's disease with A2V variants of Amyloid-β
We developed a novel therapeutic strategy for Alzheimer’s disease (AD) exploiting the properties of a natural variant of Amyloid-β (Aβ) carrying the A2V substitution, which protects heterozygous carriers from AD by its ability to interact with wild-type Aβ, hindering conformational changes and assembly thereof. As prototypic compound we designed a six-mer mutated peptide (Aβ1-6A2V), linked to the HIV-related TAT protein, which is widely used for brain delivery and cell membrane penetration of drugs. The resulting molecule [Aβ1-6A2VTAT(D)] revealed strong anti-amyloidogenic effects in vitro and protected human neuroblastoma cells from Aβ toxicity. Preclinical studies in AD mouse models showed that short-term treatment with Aβ1-6A2VTAT(D) inhibits Aβ aggregation and cerebral amyloid deposition, but a long treatment schedule unexpectedly increases amyloid burden, although preventing cognitive deterioration. Our data support the view that the AβA2V-based strategy can be successfully used for the development of treatments for AD, as suggested by the natural protection against the disease in human A2V heterozygous carriers. The undesirable outcome of the prolonged treatment with Aβ1-6A2VTAT(D) was likely due to the TAT intrinsic attitude to increase Aβ production, avidly bind amyloid and boost its seeding activity, warning against the use of the TAT carrier in the design of AD therapeutics
n-3 fatty acid ethyl ester administration to healthy subjects and to hypertriglyceridemic patients reduces tissue factor activity in adherent monocytes
n-3 Fatty acids are known to influence several functions of monocytes, including adhesion, cytokine synthesis, and superoxide generation. Monocytes express tissue factor, a membrane-bound glycoprotein, that acts as a catalyst in the coagulation cascade. In this study we evaluated the effects of administration of n-3 fatty acid ethyl esters to healthy volunteers and to hypertriglyceridemic patients on tissue factor activity (TF activity) in adherent monocytes. n-3 Fatty acids containing 75% eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (ratio of EPA to DHA, 1.34) were administered (3 g/d) to normal volunteers for 18 weeks. In addition, the effects of this treatment were evaluated in 30 hypertriglyceridemic patients for 24 weeks by using a double-blind, placebo-controlled study. TF activity in adherent monocytes was evaluated with a one-stage clotting assay. Plasma and monocyte fatty acid compositions were determined by gas-liquid chromatography. In healthy volunteers, n-3 fatty acids significantly reduced TF activity in adherent monocytes either in the unstimulated condition or after exposure to endotoxin. The inhibitory effect was observed after 12 weeks of treatment and was more pronounced after 18 weeks (> 70%, P < .001 versus baseline). Concomitantly, levels of EPA and DHA increased in plasma and monocyte lipids. Interestingly, after stopping treatment, monocyte TF activity remained inhibited for at least 14 weeks. Treatment with n-3 fatty acids for 24 weeks also resulted in a significant reduction of TF activity in adherent monocytes from hypertriglyceridemic patients (-31% and -40% in unstimulated and endotoxin-stimulated cells; P < .05 versus baseline).(ABSTRACT TRUNCATED AT 250 WORDS
Synthesis, Molecular Editing, and Biological Assessment of the Potent Cytotoxin Leiodermatolide
It was by way of total synthesis that the issues concerning the stereostructure of leiodermatolide (1) have recently been solved; with the target now being unambiguously defined, the mission of synthesis changes as to secure a meaningful supply of this exceedingly scarce natural product derived from a deep-sea sponge. To this end, a scalable route of 19 steps (longest linear sequence) has been developed, which features a catalytic asymmetric propargylation of a highly enolizable β-keto-lactone, a ring closing alkyne metathesis and a modified Stille coupling as the key transformations. Deliberate digression from this robust blueprint brought a first set of analogues into reach, which allowed the lead qualities of 1 to be assessed. The acquired biodata show that 1 is a potent cytotoxin in human tumor cell proliferation assays, distinguished by GI50 values in the ≤3 nM range even for cell lines expressing the Pgp efflux transporter. Studies with human U2OS cells revealed that 1 causes mitotic arrest, micronucleus induction, centrosome amplification and tubulin disruption, even though no evidence for direct tubulin binding has been found in cell-free assays; moreover, the compound does not seem to act through kinase inhibition. Indirect evidence points at centrosome declustering as a possible mechanism of action, which provides a potentially rewarding outlook in that centrosome declustering agents hold promise of being inherently selective for malignant over healthy human tissue
Recommended from our members
GPR126 is a specifier of blood-brain barrier formation in the mouse central nervous system
Data availability. RNA sequencing data are available through the European Molecular Biology Laboratory–European Bioinformatics Institute (EMBL-EBI) ArrayExpress BioStudies portal with accession number E-MTAB-13914. All supporting data are provided in the Supporting Data Values file.The blood-brain barrier (BBB) acquires unique properties to regulate neuronal function during development. The formation of the BBB, which occurs in tandem with angiogenesis, is directed by the Wnt/β-catenin signaling pathway. Yet the exact molecular interplay remains elusive. Our study reveals the G protein–coupled receptor GPR126 as a critical target of canonical Wnt signaling, essential for the development of the BBB’s distinctive vascular characteristics and its functional integrity. Endothelial cell–specific deletion of the Gpr126 gene in mice induced aberrant vascular morphogenesis, resulting in disrupted BBB organization. Simultaneously, heightened transcytosis in vitro compromised barrier integrity, resulting in enhanced vascular permeability. Mechanistically, GPR126 enhanced endothelial cell migration, pivotal for angiogenesis, acting through an interaction between LRP1 and β1 integrin, thereby balancing the levels of β1 integrin activation and recycling. Overall, we identified GPR126 as a specifier of an organotypic vascular structure, which sustained angiogenesis and guaranteed the acquisition of the BBB properties during development.This study was supported by the European Research Council (ERC; 742922) and AIRC (18683 and 21320) to ED; ITN BtRAIN (675619) and CARIPLO Foundation (2016-0461) to MG; and AIRC (26183) and Horizon 2020 (964481) to DI. KB was funded by the Francis Crick Institute (FC001751). AP is funded by the Engineering and Physical Sciences Research Council (EP/S030964/1). SS was supported by the ERC (grant 101002280) and AIRC (grant 24415). MDG is supported by the Armenise Harvard Foundation, ERC (101116224), and AIRC (27564). MI is supported by the ERC (725038), AIRC (19891 and 22737), and Italian Ministry for University and Research (INF-ACT and PRIN 2022FMESXL)
15-epi-lipoxin A4 reduces the mortality of prematurely born pups in a mouse model of infection-induced preterm birth
Preterm birth remains the leading cause of neonatal mortality and morbidity worldwide. There are currently few effective therapies and therefore an urgent need for novel treatments. Although there is much focus on trying to alter gestation of delivery, the primary aim of preterm birth prevention therapies should be to reduce prematurity related mortality and morbidity. Given the link between intrauterine infection and inflammation and preterm labour (PTL), we hypothesized that administration of lipoxins, key anti-inflammatory and pro-resolution mediators, could be a useful novel treatment for PTL. Using a mouse model of infection-induced PTL, we investigated whether 15-epi-lipoxin A(4) could delay lipopolysaccharide (LPS)-induced PTL and reduce pup mortality. On D17 of gestation mice (n = 9–12) were pretreated with vehicle or 15-epi-lipoxin A(4) prior to intrauterine administration of LPS or PBS. Although pretreatment with 15-epi-lipoxin A(4) did not delay LPS-induced PTL, there was a significant reduction in the mortality amongst prematurely delivered pups (defined as delivery within 36 h of surgery) in mice treated with 15-epi-lipoxin A(4) prior to LPS treatment, compared with those receiving LPS alone (P < 0.05). Quantitative real-time (QRT)-PCR analysis of utero-placental tissues harvested 6 h post-treatment demonstrated that 15-epi-lipoxin A(4) treatment increased Ptgs2 expression in the uterus, placenta and fetal membranes (P < 0.05) and decreased 15-Hpgd expression (P < 0.05) in the placenta and uterus, suggesting that 15-epi-lipoxin A(4) may regulate the local production and activity of prostaglandins. These data suggest that augmenting lipoxin levels could be a useful novel therapeutic option in the treatment of PTL, protecting the fetus from the adverse effects of infection-induced preterm birth
Heterogeneity of Microglial Activation in the Innate Immune Response in the Brain
The immune response in the brain has been widely investigated and while many studies have focused on the proinflammatory cytotoxic response, the brain’s innate immune system demonstrates significant heterogeneity. Microglia, like other tissue macrophages, participate in repair and resolution processes after infection or injury to restore normal tissue homeostasis. This review examines the mechanisms that lead to reduction of self-toxicity and to repair and restructuring of the damaged extracellular matrix in the brain. Part of the resolution process involves switching macrophage functional activation to include reduction of proinflammatory mediators, increased production and release of anti-inflammatory cytokines, and production of cytoactive factors involved in repair and reconstruction of the damaged brain. Two partially overlapping and complimentary functional macrophage states have been identified and are called alternative activation and acquired deactivation. The immunosuppressive and repair processes of each of these states and how alternative activation and acquired deactivation participate in chronic neuroinflammation in the brain are discussed
Key mechanisms governing resolution of lung inflammation
Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered
- …