4,812 research outputs found

    Random Field XY Model in Three Dimensions: The Role of Vortices

    Full text link
    We study vortex states in a 3d random-field XY model of up to one billion lattice spins. Starting with random spin orientations, the sample freezes into the vortex-glass state with a stretched-exponential decay of spin correlations, having short correlation length and a low susceptibility, compared to vortex-free states. In a field opposite to the initial magnetization, peculiar topological objects -- walls of spins still opposite to the field -- emerge along the hysteresis curve. On increasing the field strength, the walls develop cracks bounded by vortex loops. The loops then grow in size and eat the walls away. Applications to magnets and superconductors are discussed.Comment: 5 pages, 8 figure

    A self-sustaining nonlinear dynamo process in Keplerian shear flows

    Full text link
    A three-dimensional nonlinear dynamo process is identified in rotating plane Couette flow in the Keplerian regime. It is analogous to the hydrodynamic self-sustaining process in non-rotating shear flows and relies on the magneto-rotational instability of a toroidal magnetic field. Steady nonlinear solutions are computed numerically for a wide range of magnetic Reynolds numbers but are restricted to low Reynolds numbers. This process may be important to explain the sustenance of coherent fields and turbulent motions in Keplerian accretion disks, where all its basic ingredients are present.Comment: 4 pages, 7 figures, accepted for publication in Physical Review Letter

    A preliminary study of air-pollution measurement by active remote-sensing techniques

    Get PDF
    Air pollutants are identified, and the needs for their measurement from satellites and aircraft are discussed. An assessment is made of the properties of these pollutants and of the normal atmosphere, including interactions with light of various wavelengths and the resulting effects on transmission and scattering of optical signals. The possible methods for active remote measurement are described; the relative performance capabilities of double-ended and single-ended systems are compared qualitatively; and the capabilities of the several single-ended or backscattering techniques are compared quantitatively. The differential-absorption lidar (DIAL) technique is shown to be superior to the other backscattering techniques. The lidar system parameters and their relationships to the environmental factors and the properties of pollutants are examined in detail. A computer program that models both the atmosphere (including pollutants) and the lidar system is described. The performance capabilities of present and future lidar components are assessed, and projections are made of prospective measurement capabilities for future lidar systems. Following a discussion of some important operational factors that affect both the design and measurement capabilities of airborne and satellite-based lidar systems, the extensive analytical results obtained through more than 1000 individual cases analyzed with the aid of the computer program are summarized and discussed. The conclusions are presented. Recommendations are also made for additional studies to investigate cases that could not be explored adequately during this study
    corecore