1,090 research outputs found

    Antiferromagnetic phase of the gapless semiconductor V3Al

    Full text link
    Discovering new antiferromagnetic compounds is at the forefront of developing future spintronic devices without fringing magnetic fields. The antiferromagnetic gapless semiconducting D03 phase of V3Al was successfully synthesized via arc-melting and annealing. The antiferromagnetic properties were established through synchrotron measurements of the atom-specific magnetic moments, where the magnetic dichroism reveals large and oppositely-oriented moments on individual V atoms. Density functional theory calculations confirmed the stability of a type G antiferromagnetism involving only two-third of the V atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray diffraction and transport measurements also support the antiferromagnetism. This archetypal gapless semiconductor may be considered as a cornerstone for future spintronic devices containing antiferromagnetic elements.Comment: Accepted to Physics Review B on 02/23/1

    Prediction of Ferromagnetic Ground State of NaCl-type FeN

    Full text link
    Ab-initio results for structural and electronic properties of NaCl-type FeN are presented in a framework of plane-wave and ultrasoft pseudopotentials. Competition among different magnetic ordering is examined. We find the ferromagnetic phase stable overall. Stabilization over the unpolarized phase is obtained by splitting one flat t_2g-type band crossing the Fermi energy. A comparison with CrN is considered. We find large differences in the properties of the two systems that can be addressed to the smaller ionicity and magnetization of FeN.Comment: 5 pages, 4 figures, twocolumn latex style Sentence changed in Section III line 1

    Theory of anyon excitons: Relation to excitons of nu=1/3 and nu=2/3 incompressible liquids

    Get PDF
    Elementary excitations of incompressible quantum liquids (IQL's) are anyons, i.e., quasiparticles carrying fractional charges and obeying fractional statistics. To find out how the properties of these quasiparticles manifest themselves in the optical spectra, we have developed the anyon exciton model (AEM) and compared the results with the finite-size data for excitons of nu=1/3 and nu=2/3 IQL's. The model considers an exciton as a neutral composite consisting of three quasielectrons and a single hole. The AEM works well when the separation between electron and hole confinement planes, h, is larger than the magnetic length l. In the framework of the AEM an exciton possesses momentum k and two internal quantum numbers, one of which can be chosen as the angular momentum, L, of the k=0 state. Existence of the internal degrees of freedom results in the multiple branch energy spectrum, crater-like electron density shape and 120 degrees density correlations for k=0 excitons, and the splitting of the electron shell into bunches for non-zero k excitons. For h larger than 2l the bottom states obey the superselection rule L=3m (m are integers starting from 2), all of them are hard core states. For h nearly 2l there is one-to-one correspondence between the low-energy spectra found for the AEM and the many- electron exciton spectra of the nu=2/3 IQL, whereas some states are absent from the many-electron spectra of the nu=1/3 IQL. We argue that this striking difference in the spectra originates from the different populational statistics of the quasielectrons of charge conjugate IQL's and show that the proper account of the statistical requirements eliminates excessive states from the spectrum. Apparently, this phenomenon is the first manifestation of the exclusion statistics in the anyon bound states.Comment: 26 pages with 9 figures, typos correcte

    Annealing of amorphous FexCo100-x nanoparticles synthesized by a modified aqueous reduction using NaBH4

    Get PDF
    FexCo100−x nanoparticles were synthesized by aqueous reduction in iron (II) sulfate and cobalt (II) sulfate using sodium borohydride and sodium citrate. The initial concentrations of iron and cobalt were varied while maintaining an overall metal concentration of 4.60 mM. Increasing the cobalt content from 0 to 100 at. % decreased the magnetization saturation from 152 to 48 emu/g, as determined by room temperature vibrating sample magnetometry. Annealing the samples at 450 and 600 °C showed an increase in crystallite size. Powder x-ray diffraction and transmission electron microscopy was performed to determine the phases and morphology of the materials

    Evolution of magnetic polarons and spin-carrier interactions through the metal-insulator transition in Eu1−x_{1-x}Gdx_{x}O

    Full text link
    Raman scattering studies as functions of temperature, magnetic field, and Gd-substitution are used to investigate the evolution of magnetic polarons and spin-carrier interactions through the metal-insulator transition in Eu1−x_{1-x}Gdx_{x}O. These studies reveal a greater richness of phase behavior than have been previously observed using transport measurements: a spin-fluctuation-dominated paramagnetic (PM) phase regime for T >> T∗^{*} >> TC_{C}, a two-phase regime for T << T∗^{*} in which magnetic polarons develop and coexist with a remnant of the PM phase, and an inhomogeneous ferromagnetic phase regime for T << TC_{C}

    Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia

    Get PDF
    The striatum is widely viewed as the fulcrum of pathophysiology in Parkinson’s disease (PD) and L-DOPA-induced dyskinesia (LID). In these disease states, the balance in activity of striatal direct pathway spiny projection neurons (dSPNs) and indirect pathway spiny projection neurons (iSPNs) is disrupted, leading to aberrant action selection. However, it is unclear whether countervailing mechanisms are engaged in these states. Here we report that iSPN intrinsic excitability and excitatory corticostriatal synaptic connectivity were lower in PD models than normal; ​L-DOPA treatment restored these properties. Conversely, dSPN intrinsic excitability was elevated in tissue from PD models and suppressed in LID models. Although the synaptic connectivity of dSPNs did not change in PD models, it fell with ​L-DOPA treatment. In neither case, however, was the strength of corticostriatal connections globally scaled. Thus, SPNs manifested homeostatic adaptations in intrinsic excitability and in the number but not strength of excitatory corticostriatal synapses

    Theory of Exciton Recombination from the Magnetically Induced Wigner Crystal

    Full text link
    We study the theory of itinerant-hole photoluminescence of two-dimensional electron systems in the regime of the magnetically induced Wigner crystal. We show that the exciton recombination transition develops structure related to the presence of the Wigner crystal. The form of this structure depends strongly on the separation dd between the photo-excited hole and the plane of the two-dimensional electron gas. When dd is small compared to the magnetic length, additional peaks appear in the spectrum due to the recombination of exciton states with wavevectors equal to the reciprocal lattice vectors of the crystal. For dd larger than the magnetic length, the exciton becomes strongly confined to an interstitial site of the lattice, and the structure in the spectrum reflects the short-range correlations of the Wigner crystal. We derive expressions for the energies and the radiative lifetimes of the states contributing to photoluminescence, and discuss how the results of our analysis compare with experimental observations.Comment: 10 pages, no figures, uses Revtex and multicol.st

    Theory of Photoluminescence of the ν=1\nu=1 Quantum Hall State: Excitons, Spin-Waves and Spin-Textures

    Full text link
    We study the theory of intrinsic photoluminescence of two-dimensional electron systems in the vicinity of the ν=1\nu=1 quantum Hall state. We focus predominantly on the recombination of a band of initial ``excitonic states'' that are the low-lying energy states of our model at ν=1\nu=1. It is shown that the recombination of excitonic states can account for recent observations of the polarization-resolved spectra of a high-mobility GaAs quantum well. The asymmetric broadening of the spectral line in the σ−\sigma_- polarization is explained to be the result of the ``shake-up'' of spin-waves upon radiative recombination of excitonic states. We derive line shapes for the recombination of excitonic states in the presence of long-range disorder that compare favourably with the experimental observations. We also discuss the stabilities and recombination spectra of other (``charged'') initial states of our model. An additional high-energy line observed in experiment is shown to be consistent with the recombination of a positively-charged state. The recombination spectrum of a negatively-charged initial state, predicted by our model but not observed in the present experiments, is shown to provide a direct measure of the formation energy of the smallest ``charged spin-texture'' of the ν=1\nu=1 state.Comment: 23 pages, 7 postscript figures included. Revtex with epsf.tex and multicol.sty. The revised version contains slightly improved numerical results and a few additional discussions of the result
    • …
    corecore