2,449 research outputs found

    Transient deprotonation of bacterial halorhodopsin by photoexcited base

    Get PDF
    AbstractThe excited singlet state of 6-methoxyquinoline is basic enough to abstract a proton from water and generate OH−. Pulse excitation of such a solution undergoes a massive transient alkalinization. This procedure was employed to monitor the deprotonation of the Schiff base of halorhodopsin. Both the deprotonation and reprotonation of the chromophore are diffusion controlled reactions

    GTI-space : the space of generalized topological indices

    Get PDF
    A new extension of the generalized topological indices (GTI) approach is carried out torepresent 'simple' and 'composite' topological indices (TIs) in an unified way. Thisapproach defines a GTI-space from which both simple and composite TIs represent particular subspaces. Accordingly, simple TIs such as Wiener, Balaban, Zagreb, Harary and Randićconnectivity indices are expressed by means of the same GTI representation introduced for composite TIs such as hyper-Wiener, molecular topological index (MTI), Gutman index andreverse MTI. Using GTI-space approach we easily identify mathematical relations between some composite and simple indices, such as the relationship between hyper-Wiener and Wiener index and the relation between MTI and first Zagreb index. The relation of the GTI space with the sub-structural cluster expansion of property/activity is also analysed and some routes for the applications of this approach to QSPR/QSAR are also given

    Dynamics of waves in 1D electron systems: Density oscillations driven by population inversion

    Full text link
    We explore dynamics of a density pulse induced by a local quench in a one-dimensional electron system. The spectral curvature leads to an "overturn" (population inversion) of the wave. We show that beyond this time the density profile develops strong oscillations with a period much larger than the Fermi wave length. The effect is studied first for the case of free fermions by means of direct quantum simulations and via semiclassical analysis of the evolution of Wigner function. We demonstrate then that the period of oscillations is correctly reproduced by a hydrodynamic theory with an appropriate dispersive term. Finally, we explore the effect of different types of electron-electron interaction on the phenomenon. We show that sufficiently strong interaction [U(r)≫1/mr2U(r)\gg 1/mr^2 where mm is the fermionic mass and rr the relevant spatial scale] determines the dominant dispersive term in the hydrodynamic equations. Hydrodynamic theory reveals crucial dependence of the density evolution on the relative sign of the interaction and the density perturbation.Comment: 20 pages, 13 figure

    Ballistic transport in disordered graphene

    Full text link
    An analytic theory of electron transport in disordered graphene in a ballistic geometry is developed. We consider a sample of a large width W and analyze the evolution of the conductance, the shot noise, and the full statistics of the charge transfer with increasing length L, both at the Dirac point and at a finite gate voltage. The transfer matrix approach combined with the disorder perturbation theory and the renormalization group is used. We also discuss the crossover to the diffusive regime and construct a ``phase diagram'' of various transport regimes in graphene.Comment: 23 pages, 10 figure

    Non-equilibrium Luttinger liquid: Zero-bias anomaly and dephasing

    Full text link
    A one-dimensional system of interacting electrons out of equilibrium is studied in the framework of the Luttinger liquid model. We analyze several setups and develop a theory of tunneling into such systems. A remarkable property of the problem is the absence of relaxation in energy distribution functions of left- and right-movers, yet the presence of the finite dephasing rate due to electron-electron scattering, which smears zero-bias-anomaly singularities in the tunneling density of states.Comment: 5 pages, 2 figure

    A parallel algorithm for the enumeration of benzenoid hydrocarbons

    Full text link
    We present an improved parallel algorithm for the enumeration of fixed benzenoids B_h containing h hexagonal cells. We can thus extend the enumeration of B_h from the previous best h=35 up to h=50. Analysis of the associated generating function confirms to a very high degree of certainty that Bh∼Aκh/hB_h \sim A \kappa^h /h and we estimate that the growth constant κ=5.161930154(8)\kappa = 5.161930154(8) and the amplitude A=0.2808499(1)A=0.2808499(1).Comment: 14 pages, 6 figure

    The Effect of Air on Granular Size Separation in a Vibrated Granular Bed

    Full text link
    Using high-speed video and magnetic resonance imaging (MRI) we study the motion of a large sphere in a vertically vibrated bed of smaller grains. As previously reported we find a non-monotonic density dependence of the rise and sink time of the large sphere. We find that this density dependence is solely due to air drag. We investigate in detail how the motion of the intruder sphere is influenced by size of the background particles, initial vertical position in the bed, ambient pressure and convection. We explain our results in the framework of a simple model and find quantitative agreement in key aspects with numerical simulations to the model equations.Comment: 14 pages, 16 figures, submitted to PRE, corrected typos, slight change

    Indications of Universal Excess Fluctuations in Nonequilibrium Systems

    Full text link
    The fluctuation in electric current in nonequilibrium steady states is investigated by molecular dynamics simulation of macroscopically uniform conductors. At low frequencies, appropriate decomposition of the spectral intensity of current into thermal and excess fluctuations provides a simple picture of excess fluctuations behaving as shot noise. This indicates that the fluctuation-dissipation relation may be violated in a universal manner by the appearance of shot noise for a wide range of systems with particle or momentum transport.Comment: 4 pages, 4 figures; title changed, major revision; to appear in J. Phys. Soc. Jp

    On the Difference of Atom-Bond Sum-Connectivity and Atom-Bond-Connectivity Indices

    Full text link
    The atom-bond-connectivity (ABC) index is one of the well-investigated degree-based topological indices. The atom-bond sum-connectivity (ABS) index is a modified version of the ABC index, which was introduced recently. The primary goal of the present paper is to investigate the difference between the aforementioned two indices, namely ABS−ABCABS-ABC. It is shown that the difference ABS−ABCABS-ABC is positive for all graphs of minimum degree at least 22 as well as for all line graphs of those graphs of order at least 55 that are different from the path and cycle graphs. By means of computer search, the difference ABS−ABCABS-ABC is also calculated for all trees of order at most 1515.Comment: 16 pages and 5 figure

    Measurements of pion/minus/ proton elastic scattering from 1.71 to 5.53 GeV/c

    Get PDF
    Negative pion proton elastic scattering differential cross sections from 1.71 to 5.53 GeV/
    • …
    corecore