532 research outputs found
Sensitivity and parameter-estimation precision for alternate LISA configurations
We describe a simple framework to assess the LISA scientific performance
(more specifically, its sensitivity and expected parameter-estimation precision
for prescribed gravitational-wave signals) under the assumption of failure of
one or two inter-spacecraft laser measurements (links) and of one to four
intra-spacecraft laser measurements. We apply the framework to the simple case
of measuring the LISA sensitivity to monochromatic circular binaries, and the
LISA parameter-estimation precision for the gravitational-wave polarization
angle of these systems. Compared to the six-link baseline configuration, the
five-link case is characterized by a small loss in signal-to-noise ratio (SNR)
in the high-frequency section of the LISA band; the four-link case shows a
reduction by a factor of sqrt(2) at low frequencies, and by up to ~2 at high
frequencies. The uncertainty in the estimate of polarization, as computed in
the Fisher-matrix formalism, also worsens when moving from six to five, and
then to four links: this can be explained by the reduced SNR available in those
configurations (except for observations shorter than three months, where five
and six links do better than four even with the same SNR). In addition, we
prove (for generic signals) that the SNR and Fisher matrix are invariant with
respect to the choice of a basis of TDI observables; rather, they depend only
on which inter-spacecraft and intra-spacecraft measurements are available.Comment: 17 pages, 4 EPS figures, IOP style, corrected CQG versio
Semi-Teleparallel Theories of Gravitation
A class of theories of gravitation that naturally incorporates preferred
frames of reference is presented. The underlying space-time geometry consists
of a partial parallelization of space-time and has properties of Riemann-Cartan
as well as teleparallel geometry. Within this geometry, the kinematic
quantities of preferred frames are associated with torsion fields. Using a
variational method, it is shown in which way action functionals for this
geometry can be constructed. For a special action the field equations are
derived and the coupling to spinor fields is discussed.Comment: 14 pages, LaTe
Gravitational Waves from a Compact Star in a Circular, Inspiral Orbit, in the Equatorial Plane of a Massive, Spinning Black Hole, as Observed by LISA
Results are presented from high-precision computations of the orbital
evolution and emitted gravitational waves for a stellar-mass object spiraling
into a massive black hole in a slowly shrinking, circular, equatorial orbit.
The focus of these computations is inspiral near the innermost stable circular
orbit (isco)---more particularly, on orbits for which the angular velocity
Omega is 0.03 < Omega/Omega_{isco} < 1. The computations are based on the
Teukolsky-Sasaki-Nakamura formalism, and the results are tabulated in a set of
functions that are of order unity and represent relativistic corrections to
low-orbital-velocity formulas. These tables can form a foundation for future
design studies for the LISA space-based gravitational-wave mission. A first
survey of applications to LISA is presented: Signal to noise ratios S/N are
computed and graphed as functions of the time-evolving gravitational-wave
frequency for representative values of the hole's mass M and spin a and the
inspiraling object's mass \mu, with the distance to Earth chosen to be r_o = 1
Gpc. These S/N's show a very strong dependence on the black-hole spin, as well
as on M and \mu. A comparison with predicted event rates shows strong promise
for detecting these waves, but not beyond about 1Gpc if the inspiraling object
is a white dwarf or neutron star. This argues for a modest lowering of LISA's
noise floor. A brief discussion is given of the prospects for extracting
information from the observed wavesComment: Physical Review D, in press; 21 pages, 9 figures, 10 tables it is
present in the RevTeX fil
Gauge conditions for binary black hole puncture data based on an approximate helical Killing vector
We show that puncture data for quasicircular binary black hole orbits allow a
special gauge choice that realizes some of the necessary conditions for the
existence of an approximate helical Killing vector field. Introducing free
parameters for the lapse at the punctures we can satisfy the condition that the
Komar and ADM mass agree at spatial infinity. Several other conditions for an
approximate Killing vector are then automatically satisfied, and the 3-metric
evolves on a timescale smaller than the orbital timescale. The time derivative
of the extrinsic curvature however remains significant. Nevertheless,
quasicircular puncture data are not as far from possessing a helical Killing
vector as one might have expected.Comment: 11 pages, 6 figures, 2 table
Event horizons and apparent horizons in spherically symmetric geometries
Spherical configurations that are very massive must be surrounded by apparent
horizons. These in turn, when placed outside a collapsing body, must propagate
outward with a velocity equal to the velocity of radially outgoing photons.
That proves, within the framework of (1+3) formalism and without resorting to
the Birkhoff theorem, that apparent horizons coincide with event horizons.Comment: 5 pages, plainte
Treating instabilities in a hyperbolic formulation of Einstein's equations
We have recently constructed a numerical code that evolves a spherically
symmetric spacetime using a hyperbolic formulation of Einstein's equations. For
the case of a Schwarzschild black hole, this code works well at early times,
but quickly becomes inaccurate on a time scale of 10-100 M, where M is the mass
of the hole. We present an analytic method that facilitates the detection of
instabilities. Using this method, we identify a term in the evolution equations
that leads to a rapidly-growing mode in the solution. After eliminating this
term from the evolution equations by means of algebraic constraints, we can
achieve free evolution for times exceeding 10000M. We discuss the implications
for three-dimensional simulations.Comment: 13 pages, 9 figures. To appear in Phys. Rev.
Numerical Relativity Using a Generalized Harmonic Decomposition
A new numerical scheme to solve the Einstein field equations based upon the
generalized harmonic decomposition of the Ricci tensor is introduced. The
source functions driving the wave equations that define generalized harmonic
coordinates are treated as independent functions, and encode the coordinate
freedom of solutions. Techniques are discussed to impose particular gauge
conditions through a specification of the source functions. A 3D, free
evolution, finite difference code implementing this system of equations with a
scalar field matter source is described. The second-order-in-space-and-time
partial differential equations are discretized directly without the use first
order auxiliary terms, limiting the number of independent functions to
fifteen--ten metric quantities, four source functions and the scalar field.
This also limits the number of constraint equations, which can only be enforced
to within truncation error in a numerical free evolution, to four. The
coordinate system is compactified to spatial infinity in order to impose
physically motivated, constraint-preserving outer boundary conditions. A
variant of the Cartoon method for efficiently simulating axisymmetric
spacetimes with a Cartesian code is described that does not use interpolation,
and is easier to incorporate into existing adaptive mesh refinement packages.
Preliminary test simulations of vacuum black hole evolution and black hole
formation via scalar field collapse are described, suggesting that this method
may be useful for studying many spacetimes of interest.Comment: 18 pages, 6 figures; updated to coincide with journal version, which
includes some expanded discussions and a new appendix with a stability
analysis of a simplified problem using the same discretization scheme
described in the pape
Can a combination of the conformal thin-sandwich and puncture methods yield binary black hole solutions in quasi-equilibrium?
We consider combining two important methods for constructing
quasi-equilibrium initial data for binary black holes: the conformal
thin-sandwich formalism and the puncture method. The former seeks to enforce
stationarity in the conformal three-metric and the latter attempts to avoid
internal boundaries, like minimal surfaces or apparent horizons. We show that
these two methods make partially conflicting requirements on the boundary
conditions that determine the time slices. In particular, it does not seem
possible to construct slices that are quasi-stationary and avoid physical
singularities and simultaneously are connected by an everywhere positive lapse
function, a condition which must obtain if internal boundaries are to be
avoided. Some relaxation of these conflicting requirements may yield a soluble
system, but some of the advantages that were sought in combining these
approaches will be lost.Comment: 8 pages, LaTeX2e, 2 postscript figure
Causal propagation of geometrical fields in relativistic cosmology
We employ the extended 1+3 orthonormal frame formalism for fluid spacetime
geometries , which contains the Bianchi field
equations for the Weyl curvature, to derive a 44-D evolution system of
first-order symmetric hyperbolic form for a set of geometrically defined
dynamical field variables. Describing the matter source fields
phenomenologically in terms of a barotropic perfect fluid, the propagation
velocities (with respect to matter-comoving observers that Fermi-propagate
their spatial reference frames) of disturbances in the matter and the
gravitational field, represented as wavefronts by the characteristic 3-surfaces
of the system, are obtained. In particular, the Weyl curvature is found to
account for two (non-Lorentz-invariant) Coulomb-like characteristic eigenfields
propagating with and four transverse characteristic eigenfields
propagating with , which are well known, and four
(non-Lorentz-invariant) longitudinal characteristic eigenfields propagating
with |v| = \sfrac{1}{2}. The implications of this result are discussed in
some detail and a parallel is drawn to the propagation of irregularities in the
matter distribution. In a worked example, we specialise the equations to
cosmological models in locally rotationally symmetric class II and include the
constraints into the set of causally propagating dynamical variables.Comment: 25 pages, RevTeX (10pt), accepted for publication by Physical Review
- …