4,287 research outputs found

    Characterizing Weak Chaos using Time Series of Lyapunov Exponents

    Full text link
    We investigate chaos in mixed-phase-space Hamiltonian systems using time series of the finite- time Lyapunov exponents. The methodology we propose uses the number of Lyapunov exponents close to zero to define regimes of ordered (stickiness), semi-ordered (or semi-chaotic), and strongly chaotic motion. The dynamics is then investigated looking at the consecutive time spent in each regime, the transition between different regimes, and the regions in the phase-space associated to them. Applying our methodology to a chain of coupled standard maps we obtain: (i) that it allows for an improved numerical characterization of stickiness in high-dimensional Hamiltonian systems, when compared to the previous analyses based on the distribution of recurrence times; (ii) that the transition probabilities between different regimes are determined by the phase-space volume associated to the corresponding regions; (iii) the dependence of the Lyapunov exponents with the coupling strength.Comment: 8 pages, 6 figure

    Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics

    Full text link
    We introduce and investigate billiard systems with an adjusted ray dynamics that accounts for modifications of the conventional reflection of rays due to universal wave effects. We show that even small modifications of the specular reflection law have dramatic consequences on the phase space of classical billiards. These include the creation of regions of non-Hamiltonian dynamics, the breakdown of symmetries, and changes in the stability and morphology of periodic orbits. Focusing on optical microcavities, we show that our adjusted dynamics provides the missing ray counterpart to previously observed wave phenomena and we describe how to observe its signatures in experiments. Our findings also apply to acoustic and ultrasound waves and are important in all situations where wavelengths are comparable to system sizes, an increasingly likely situation considering the systematic reduction of the size of electronic and photonic devices.Comment: 6 pages, 4 figures, final published versio

    Langevin Thermostat for Rigid Body Dynamics

    Full text link
    We present a new method for isothermal rigid body simulations using the quaternion representation and Langevin dynamics. It can be combined with the traditional Langevin or gradient (Brownian) dynamics for the translational degrees of freedom to correctly sample the NVT distribution in a simulation of rigid molecules. We propose simple, quasi-symplectic second-order numerical integrators and test their performance on the TIP4P model of water. We also investigate the optimal choice of thermostat parameters.Comment: 15 pages, 13 figures, 1 tabl

    Poincare recurrences and transient chaos in systems with leaks

    Full text link
    In order to simulate observational and experimental situations, we consider a leak in the phase space of a chaotic dynamical system. We obtain an expression for the escape rate of the survival probability applying the theory of transient chaos. This expression improves previous estimates based on the properties of the closed system and explains dependencies on the position and size of the leak and on the initial ensemble. With a subtle choice of the initial ensemble, we obtain an equivalence to the classical problem of Poincare recurrences in closed systems, which is treated in the same framework. Finally, we show how our results apply to weakly chaotic systems and justify a split of the invariant saddle in hyperbolic and nonhyperbolic components, related, respectively, to the intermediate exponential and asymptotic power-law decays of the survival probability.Comment: Corrected version, as published. 12 pages, 9 figure

    New Langevin and Gradient Thermostats for Rigid Body Dynamics

    Get PDF
    We introduce two new thermostats, one of Langevin type and one of gradient (Brownian) type, for rigid body dynamics. We formulate rotation using the quaternion representation of angular coordinates; both thermostats preserve the unit length of quaternions. The Langevin thermostat also ensures that the conjugate angular momenta stay within the tangent space of the quaternion coordinates, as required by the Hamiltonian dynamics of rigid bodies. We have constructed three geometric numerical integrators for the Langevin thermostat and one for the gradient thermostat. The numerical integrators reflect key properties of the thermostats themselves. Namely, they all preserve the unit length of quaternions, automatically, without the need of a projection onto the unit sphere. The Langevin integrators also ensure that the angular momenta remain within the tangent space of the quaternion coordinates. The Langevin integrators are quasi-symplectic and of weak order two. The numerical method for the gradient thermostat is of weak order one. Its construction exploits ideas of Lie-group type integrators for differential equations on manifolds. We numerically compare the discretization errors of the Langevin integrators, as well as the efficiency of the gradient integrator compared to the Langevin ones when used in the simulation of rigid TIP4P water model with smoothly truncated electrostatic interactions. We observe that the gradient integrator is computationally less efficient than the Langevin integrators. We also compare the relative accuracy of the Langevin integrators in evaluating various static quantities and give recommendations as to the choice of an appropriate integrator.Comment: 16 pages, 4 figure

    Irreducible Representations of Diperiodic Groups

    Full text link
    The irreducible representations of all of the 80 diperiodic groups, being the symmetries of the systems translationally periodical in two directions, are calculated. To this end, each of these groups is factorized as the product of a generalized translational group and an axial point group. The results are presented in the form of the tables, containing the matrices of the irreducible representations of the generators of the groups. General properties and some physical applications (degeneracy and topology of the energy bands, selection rules, etc.) are discussed.Comment: 30 pages, 5 figures, 28 tables, 18 refs, LaTex2.0
    • …
    corecore