886 research outputs found

    Localizing gravitational wave sources with optical telescopes and combining electromagnetic and gravitational wave data

    Full text link
    Neutron star binaries, which are among the most promising sources for the direct detection of gravitational waves (GW) by ground based detectors, are also potential electromagnetic (EM) emitters. Gravitational waves will provide a new window to observe these events and hopefully give us glimpses of new astrophysics. In this paper, we discuss how EM information of these events can considerably improve GW parameter estimation both in terms of accuracy and computational power requirement. And then in return how GW sky localization can help EM astronomers in follow-up studies of sources which did not yield any prompt emission. We discuss how both EM source information and GW source localization can be used in a framework of multi-messenger astronomy. We illustrate how the large error regions in GW sky localizations can be handled in conducting optical astronomy in the advance detector era. We show some preliminary results in the context of an array of optical telescopes called BlackGEM, dedicated for optical follow-up of GW triggers, that is being constructed in La Silla, Chile and is expected to operate concurrent to the advanced GW detectors.Comment: 8 pages, 8 figures, Proceeding for Sant Cugat Forum for Astrophysic

    The host galaxy of GRB010222: The strongest damped Lyman-alpha system known

    Get PDF
    Analysis of the absorption lines in the afterglow spectrum of the gamma-ray burst GRB010222 indicates that its host galaxy (at a redshift of z=1.476) is the strongest damped Lyman-alpha (DLA) system known, having a very low metallicity and modest dust content. This conclusion is based on the detection of the red wing of Lyman-alpha plus a comparison of the equivalent widths of ultraviolet Mg I, Mg II, and Fe II lines with those in other DLAs. The column density of H I, deduced from a fit to the wing of Lyman-alpha, is (5 +/- 2) 10^22 cm^-2. The ratio of the column densities of Zn and Cr lines suggests that the dust content in our line of sight through the galaxy is low. This could be due to either dust destruction by the ultraviolet emission of the afterglow or to an initial dust composition different to that of the diffuse interstellar material, or a combination of both.Comment: Submitted to MNRAS 12 page

    SCUBA Observations of the Host Galaxies of Gamma-Ray Bursts

    Get PDF
    In recent years, a population of galaxies with huge infrared luminosities and dust masses has been discovered in the submillimetre. Observations suggest that the AGN contribution to the luminosities of these submillimetre-selected galaxies is low; instead their luminosities are thought to be mainly due to strong episodes of star formation following merger events. Our current understanding of GRBs as the endpoints in the life of massive stars suggest that they will be located in such galaxies.We have observed a sample of well-located GRB host galaxies in the submillimetre. Comparing the results with the general submillimetre-selected galaxy population, we find that at low fluxes (S850 ≤ 4 mJy), the two agree well. However, there is a lack of bright GRB hosts in the submillimetre. This finding is reinforced when the results of other groups are included. Possible explanations are discussed. These results help us assess the roles of both GRB host galaxies and submillimetre-selected galaxies in the evolution of the Universe

    SCUBA observations of the host galaxies of four dark gamma-ray bursts

    Get PDF
    We present the results of a search for submillimetre-luminous host galaxies of optically dark gamma-ray bursts (GRBs) using the Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT). We made photometry measurements of the 850-micron flux at the location of four `dark bursts', which are those with no detected optical afterglow despite rapid deep searches, and which may therefore be within galaxies containing substantial amounts of dust. We were unable to detect any individual source significantly. Our results are consistent with predictions for the host galaxy population as a whole, rather than for a subset of dusty hosts. This indicates that optically dark GRBs are not especially associated with very submillimetre-luminous galaxies and so cannot be used as reliable indicators of dust-enshrouded massive star-formation activity. Further observations are required to establish the relationship between the wider GRB host galaxy population and SCUBA galaxies.Comment: 6 pages. Accepted for publication in MNRA

    Gas and dust properties in the afterglow spectra of GRB 050730

    Get PDF
    We present early WHT ISIS optical spectroscopy of the afterglow of gamma-ray burst GRB 050730. The spectrum shows a DLA system with the highest measured hydrogen column to date: N(HI) = 22.1 +/- 0.1 at the third-highest GRB redshift z = 3.968. Our analysis of the Swift XRT X-ray observations of the early afterglow show X-ray flares accompanied by decreasing X-ray absorption. From both the optical and the X-ray spectra we constrain the dust and gas properties of the host galaxy. We find the host to be a low metallicity galaxy, with low dust content. Much of the X-ray absorbing gas is situated close to the GRB, whilst the HI absorption causing the DLA is most likely located further out.Comment: 5 pages, 2 figures. Accepted for A&A Letter

    The outer halo globular cluster system of M31 - II. Kinematics

    Full text link
    We present a detailed kinematic analysis of the outer halo globular cluster (GC) system of M31. Our basis for this is a set of new spectroscopic observations for 78 clusters lying at projected distances between Rproj ~20-140 kpc from the M31 centre. These are largely drawn from the recent PAndAS globular cluster catalogue; 63 of our targets have no previous velocity data. Via a Bayesian maximum likelihood analysis we find that GCs with Rproj > 30 kpc exhibit coherent rotation around the minor optical axis of M31, in the same direction as more centrally- located GCs, but with a smaller amplitude of 86+/-17 km s-1. There is also evidence that the velocity dispersion of the outer halo GC system decreases as a function of projected distance from the M31 centre, and that this relation can be well described by a power law of index ~ -0.5. The velocity dispersion profile of the outer halo GCs is quite similar to that of the halo stars, at least out to the radius up to which there is available information on the stellar kinematics. We detect and discuss various velocity correlations amongst subgroups of GCs that lie on stellar debris streams in the M31 halo. Many of these subgroups are dynamically cold, exhibiting internal velocity dispersions consistent with zero. Simple Monte Carlo experiments imply that such configurations are unlikely to form by chance, adding weight to the notion that a significant fraction of the outer halo GCs in M31 have been accreted alongside their parent dwarf galaxies. We also estimate the M31 mass within 200 kpc via the Tracer Mass Estimator, finding (1.2 - 1.6) +/- 0.2 10^{12}M_sun. This quantity is subject to additional systematic effects due to various limitations of the data, and assumptions built in into the TME. Finally, we discuss our results in the context of formation scenarios for the M31 halo.Comment: 24 pages, 12 figures, 7 tables; Accepted for publication in MNRA

    A trio of new Local Group galaxies with extreme properties

    Full text link
    We report on the discovery of three new dwarf galaxies in the Local Group. These galaxies are found in new CFHT/MegaPrime g,i imaging of the south-western quadrant of M31, extending our extant survey area to include the majority of the southern hemisphere of M31's halo out to 150 kpc. All these galaxies have stellar populations which appear typical of dwarf spheroidal (dSph) systems. The first of these galaxies, Andromeda XVIII, is the most distant Local Group dwarf discovered in recent years, at ~1.4 Mpc from the Milky Way (~ 600 kpc from M31). The second galaxy, Andromeda XIX, a satellite of M31, is the most extended dwarf galaxy known in the Local Group, with a half-light radius of r_h ~ 1.7 kpc. This is approximately an order of magnitude larger than the typical half-light radius of many Milky Way dSphs, and reinforces the difference in scale sizes seen between the Milky Way and M31 dSphs (such that the M31 dwarfs are generally more extended than their Milky Way counterparts). The third galaxy, Andromeda XX, is one of the faintest galaxies so far discovered in the vicinity of M31, with an absolute magnitude of order M_V ~ -6.3. Andromeda XVIII, XIX and XX highlight different aspects of, and raise important questions regarding, the formation and evolution of galaxies at the extreme faint-end of the luminosity function. These findings indicate that we have not yet sampled the full parameter space occupied by dwarf galaxies, although this is an essential pre-requisite for successfully and consistently linking these systems to the predicted cosmological dark matter sub-structure.Comment: 32 pages, 7 figures (ApJ preprint format). Accepted for publication in Ap

    Evidence for a supernova in reanalyzed optical and near-infrared images of GRB970228

    Get PDF
    We present B-, V-, R_c-, I_c-, J-, H-, K- and K'-band observations of the optical transient (OT) associated with GRB970228, based on a reanalysis of previously used images and unpublished data. In order to minimize calibration differences we have collected and analyzed most of the photometry and consistently determined the magnitude of the OT relative to a set of secondary field stars. We confirm our earlier finding that the early decay of the light curves (before March 6, 1997) was faster than that at intermediate times (between March 6 and April 7, 1997). At late times the light curves resume a fast decay (after April 7, 1997). The early-time observations of GRB970228 are consistent with relativistic blast-wave models but the intermediate- and late-time observations are hard to understand in this framework. The observations are well explained by an initial power law decay with index -1.73 +0.09 -0.12 modified at later times by a type-I_c supernova light curve. Together with the evidence for GRB980326 and GRB980425 this gives further support for the idea that at least some GRBs are associated with a possibly rare type of supernova.Comment: Submitted to the Astrophysical Journal, 9 pages including 3 figures, uses emulateapj.st
    • …
    corecore