97 research outputs found

    Gravity wave turbulence in a laboratory flume

    Get PDF
    We present an experimental study of the statistics of surface gravity wave turbulence in a flume of a horizontal size 12×6  m. For a wide range of amplitudes the wave energy spectrum was found to scale as Eω∌ω-Îœ in a frequency range of up to one decade. However, Îœ appears to be nonuniversal: it depends on the wave intensity and ranges from about 6 to 4. We discuss our results in the context of existing theories and argue that at low wave amplitudes the wave statistics is affected by the flume finite size, and at high amplitudes the wave breaking effect dominates

    Fully Automated Myocardial Strain Estimation from Cardiovascular MRI–tagged Images Using a Deep Learning Framework in the UK Biobank

    Get PDF
    Purpose: To demonstrate the feasibility and performance of a fully automated deep learning framework to estimate myocardial strain from short-axis cardiac magnetic resonance tagged images. Methods and Materials: In this retrospective cross-sectional study, 4508 cases from the UK Biobank were split randomly into 3244 training and 812 validation cases, and 452 test cases. Ground truth myocardial landmarks were defined and tracked by manual initialization and correction of deformable image registration using previously validated software with five readers. The fully automatic framework consisted of 1) a convolutional neural network (CNN) for localization, and 2) a combination of a recurrent neural network (RNN) and a CNN to detect and track the myocardial landmarks through the image sequence for each slice. Radial and circumferential strain were then calculated from the motion of the landmarks and averaged on a slice basis. Results: Within the test set, myocardial end-systolic circumferential Green strain errors were -0.001 +/- 0.025, -0.001 +/- 0.021, and 0.004 +/- 0.035 in basal, mid, and apical slices respectively (mean +/- std. dev. of differences between predicted and manual strain). The framework reproduced significant reductions in circumferential strain in diabetics, hypertensives, and participants with previous heart attack. Typical processing time was ~260 frames (~13 slices) per second on an NVIDIA Tesla K40 with 12GB RAM, compared with 6-8 minutes per slice for the manual analysis. Conclusions: The fully automated RNNCNN framework for analysis of myocardial strain enabled unbiased strain evaluation in a high-throughput workflow, with similar ability to distinguish impairment due to diabetes, hypertension, and previous heart attack.Comment: accepted in Radiology Cardiothoracic Imagin

    Quality Control-Driven Image Segmentation Towards Reliable Automatic Image Analysis in Large-Scale Cardiovascular Magnetic Resonance Aortic Cine Imaging

    Get PDF
    “The final authenticated version is available online at https://doi.org/10.1007/978-3-030-32245-8_83.”© 2019, Springer Nature Switzerland AG. Recent progress in fully-automated image segmentation has enabled efficient extraction of clinical parameters in large-scale clinical imaging studies, reducing laborious manual processing. However, the current state-of-the-art automatic image segmentation may still fail, especially when it comes to atypical cases. Visual inspection of segmentation quality is often required, thus diminishing the improvements in efficiency. This drives an increasing need to enhance the overall data processing pipeline with robust automatic quality scoring, especially for clinical applications. We present a novel quality control-driven (QCD) framework to provide reliable segmentation using a set of different neural networks. In contrast to the prior segmentation and quality scoring methods, the proposed framework automatically selects the optimal segmentation on-the-fly from the multiple candidate segmentations available, directly utilizing the inherent Dice similarity coefficient (DSC) predictions. We trained and evaluated the framework on a large-scale cardiovascular magnetic resonance aortic cine image sequences from the UK Biobank Study. The framework achieved segmentation accuracy of mean DSC at 0.966, mean prediction error of DSC within 0.015, and mean error in estimating lumen area ≀17.6 mm2 for both ascending aorta and proximal descending aorta. This novel QCD framework successfully integrates the automatic image segmentation along with detection of critical errors on a per-case basis, paving the way towards reliable fully-automatic extraction of clinical parameters for large-scale imaging studies

    Prospective association between handgrip strength and cardiac structure and function in UK adults.

    Get PDF
    BACKGROUND: Handgrip strength, a measure of muscular fitness, is associated with cardiovascular (CV) events and CV mortality but its association with cardiac structure and function is unknown. The goal of this study was to determine if handgrip strength is associated with changes in cardiac structure and function in UK adults. METHODS AND RESULTS: Left ventricular (LV) ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), mass (M), and mass-to-volume ratio (MVR) were measured in a sample of 4,654 participants of the UK Biobank Study 6.3 ± 1 years after baseline using cardiovascular magnetic resonance (CMR). Handgrip strength was measured at baseline and at the imaging follow-up examination. We determined the association between handgrip strength at baseline as well as its change over time and each of the cardiac outcome parameters. After adjustment, higher level of handgrip strength at baseline was associated with higher LVEDV (difference per SD increase in handgrip strength: 1.3ml, 95% CI 0.1-2.4; p = 0.034), higher LVSV (1.0ml, 0.3-1.8; p = 0.006), lower LVM (-1.0g, -1.8 --0.3; p = 0.007), and lower LVMVR (-0.013g/ml, -0.018 --0.007; p<0.001). The association between handgrip strength and LVEDV and LVSV was strongest among younger individuals, while the association with LVM and LVMVR was strongest among older individuals. CONCLUSIONS: Better handgrip strength was associated with cardiac structure and function in a pattern indicative of less cardiac hypertrophy and remodeling. These characteristics are known to be associated with a lower risk of cardiovascular events

    Quantitative CMR population imaging on 20,000 subjects of the UK Biobank imaging study: LV/RV quantification pipeline and its evaluation

    Get PDF
    Population imaging studies generate data for developing and implementing personalised health strategies to prevent, or more effectively treat disease. Large prospective epidemiological studies acquire imaging for pre-symptomatic populations. These studies enable the early discovery of alterations due to impending disease, and enable early identification of individuals at risk. Such studies pose new challenges requiring automatic image analysis. To date, few large-scale population-level cardiac imaging studies have been conducted. One such study stands out for its sheer size, careful implementation, and availability of top quality expert annotation; the UK Biobank (UKB). The resulting massive imaging datasets (targeting ca. 100,000 subjects) has put published approaches for cardiac image quantification to the test. In this paper, we present and evaluate a cardiac magnetic resonance (CMR) image analysis pipeline that properly scales up and can provide a fully automatic analysis of the UKB CMR study. Without manual user interactions, our pipeline performs end-to-end image analytics from multi-view cine CMR images all the way to anatomical and functional bi-ventricular quantification. All this, while maintaining relevant quality controls of the CMR input images, and resulting image segmentations. To the best of our knowledge, this is the first published attempt to fully automate the extraction of global and regional reference ranges of all key functional cardiovascular indexes, from both left and right cardiac ventricles, for a population of 20,000 subjects imaged at 50 time frames per subject, for a total of one million CMR volumes. In addition, our pipeline provides 3D anatomical bi-ventricular models of the heart. These models enable the extraction of detailed information of the morphodynamics of the two ventricles for subsequent association to genetic, omics, lifestyle habits, exposure information, and other information provided in population imaging studies. We validated our proposed CMR analytics pipeline against manual expert readings on a reference cohort of 4620 subjects with contour delineations and corresponding clinical indexes. Our results show broad significant agreement between the manually obtained reference indexes, and those automatically computed via our framework. 80.67% of subjects were processed with mean contour distance of less than 1 pixel, and 17.50% with mean contour distance between 1 and 2 pixels. Finally, we compare our pipeline with a recently published approach reporting on UKB data, and based on deep learning. Our comparison shows similar performance in terms of segmentation accuracy with respect to human experts

    Improving the Generalizability of Convolutional Neural Network-Based Segmentation on CMR Images

    Get PDF
    Background: Convolutional neural network (CNN) based segmentation methods provide an efficient and automated way for clinicians to assess the structure and function of the heart in cardiac MR images. While CNNs can generally perform the segmentation tasks with high accuracy when training and test images come from the same domain (e.g., same scanner or site), their performance often degrades dramatically on images from different scanners or clinical sites. / Methods: We propose a simple yet effective way for improving the network generalization ability by carefully designing data normalization and augmentation strategies to accommodate common scenarios in multi-site, multi-scanner clinical imaging data sets. We demonstrate that a neural network trained on a single-site single-scanner dataset from the UK Biobank can be successfully applied to segmenting cardiac MR images across different sites and different scanners without substantial loss of accuracy. Specifically, the method was trained on a large set of 3,975 subjects from the UK Biobank. It was then directly tested on 600 different subjects from the UK Biobank for intra-domain testing and two other sets for cross-domain testing: the ACDC dataset (100 subjects, 1 site, 2 scanners) and the BSCMR-AS dataset (599 subjects, 6 sites, 9 scanners). / Results: The proposed method produces promising segmentation results on the UK Biobank test set which are comparable to previously reported values in the literature, while also performing well on cross-domain test sets, achieving a mean Dice metric of 0.90 for the left ventricle, 0.81 for the myocardium, and 0.82 for the right ventricle on the ACDC dataset; and 0.89 for the left ventricle, 0.83 for the myocardium on the BSCMR-AS dataset. / Conclusions: The proposed method offers a potential solution to improve CNN-based model generalizability for the cross-scanner and cross-site cardiac MR image segmentation task

    Improving the Generalizability of Convolutional Neural Network-Based Segmentation on CMR Images

    Get PDF
    Convolutional neural network (CNN) based segmentation methods provide an efficient and automated way for clinicians to assess the structure and function of the heart in cardiac MR images. While CNNs can generally perform the segmentation tasks with high accuracy when training and test images come from the same domain (e.g. same scanner or site), their performance often degrades dramatically on images from different scanners or clinical sites. We propose a simple yet effective way for improving the network generalization ability by carefully designing data normalization and augmentation strategies to accommodate common scenarios in multi-site, multi-scanner clinical imaging data sets. We demonstrate that a neural network trained on a single-site single-scanner dataset from the UK Biobank can be successfully applied to segmenting cardiac MR images across different sites and different scanners without substantial loss of accuracy. Specifically, the method was trained on a large set of 3,975 subjects from the UK Biobank. It was then directly tested on 600 different subjects from the UK Biobank for intra-domain testing and two other sets for cross-domain testing: the ACDC dataset (100 subjects, 1 site, 2 scanners) and the BSCMR-AS dataset (599 subjects, 6 sites, 9 scanners). The proposed method produces promising segmentation results on the UK Biobank test set which are comparable to previously reported values in the literature, while also performing well on cross-domain test sets, achieving a mean Dice metric of 0.90 for the left ventricle, 0.81 for the myocardium and 0.82 for the right ventricle on the ACDC dataset; and 0.89 for the left ventricle, 0.83 for the myocardium on the BSCMR-AS dataset. The proposed method offers a potential solution to improve CNN-based model generalizability for the cross-scanner and cross-site cardiac MR image segmentation task

    Kolmogorov turbulence, Anderson localization and KAM integrability

    Full text link
    The conditions for emergence of Kolmogorov turbulence, and related weak wave turbulence, in finite size systems are analyzed by analytical methods and numerical simulations of simple models. The analogy between Kolmogorov energy flow from large to small spacial scales and conductivity in disordered solid state systems is proposed. It is argued that the Anderson localization can stop such an energy flow. The effects of nonlinear wave interactions on such a localization are analyzed. The results obtained for finite size system models show the existence of an effective chaos border between the Kolmogorov-Arnold-Moser (KAM) integrability at weak nonlinearity, when energy does not flow to small scales, and developed chaos regime emerging above this border with the Kolmogorov turbulent energy flow from large to small scales.Comment: 8 pages, 6 figs, EPJB style

    The impact of menopausal hormone therapy (MHT) on cardiac structure and function: Insights from the UK Biobank imaging enhancement study.

    Get PDF
    BACKGROUND: The effect of menopausal hormone therapy (MHT)-previously known as hormone replacement therapy-on cardiovascular health remains unclear and controversial. This cross-sectional study examined the impact of MHT on left ventricular (LV) and left atrial (LA) structure and function, alterations in which are markers of subclinical cardiovascular disease, in a population-based cohort. METHODS: Post-menopausal women who had never used MHT and those who had used MHT ≄3 years participating in the UK Biobank who had undergone cardiovascular magnetic resonance (CMR) imaging and free of known cardiovascular disease were included. Multivariable linear regression was performed to examine the relationship between cardiac parameters and MHT use ≄3 years. To explore whether MHT use on each of the cardiac outcomes differed by age, multivariable regression models were constructed with a cross-product of age and MHT fitted as an interaction term. RESULTS: Of 1604 post-menopausal women, 513 (32%) had used MHT ≄3 years. In the MHT cohort, median age at menopause was 50 (IQR: 45-52) and median duration of MHT was 8 years. In the non-MHT cohort, median age at menopause was 51 (IQR: 48-53). MHT use was associated with significantly lower LV end-diastolic volume (122.8 ml vs 119.8 ml, effect size = -2.4%, 95% CI: -4.2% to -0.5%; p = 0.013) and LA maximal volume (60.2 ml vs 57.5 ml, effect size = -4.5%, 95% CI: -7.8% to -1.0%; p = 0.012). There was no significant difference in LV mass. MHT use significantly modified the effect between age and CMR parameters; MHT users had greater decrements in LV end-diastolic volume, LV end-systolic volume and LA maximal volume with advancing age. CONCLUSIONS: MHT use was not associated with adverse, subclinical changes in cardiac structure and function. Indeed, significantly smaller LV and LA chamber volumes were observed which have been linked to favourable cardiovascular outcomes. These findings represent a novel approach to examining MHT's effect on the cardiovascular system.The Medical College of Saint Bartholomew’s Hospital Trust, NIHR Cardiovascular Biomedical Research Centre at Barts and from the “SmartHeart” Engineering and Physical Sciences Research Council (www.epsrc. ac.uk) program grant (EP/P001009/1), Oxford NIHR Biomedical Research Centre the Oxford British Heart Foundation Centre of Research Excellence, Medical Research Council (grant number MR/L016311/1), Wellcome Trust Research Training Fellowship (203553/Z/Z), the British Heart Foundation (PG/14/89/31194)

    Association Between Ambient Air Pollution and Cardiac Morpho-Functional Phenotypes: Insights From the UK Biobank Population Imaging Study.

    Get PDF
    Background: Exposure to ambient air pollution is strongly associated with increased cardiovascular morbidity and mortality. Little is known about the influence of air pollutants on cardiac structure and function. We aim to investigate the relationship between chronic past exposure to traffic-related pollutants and the cardiac chamber volume, ejection fraction, and left ventricular remodeling patterns after accounting for potential confounders. Methods: Exposure to ambient air pollutants including particulate matter and nitrogen dioxide was estimated from the Land Use Regression models for the years between 2005 and 2010. Cardiac parameters were measured from cardiovascular magnetic resonance imaging studies of 3920 individuals free from pre-existing cardiovascular disease in the UK Biobank population study. The median (interquartile range) duration between the year of exposure estimate and the imaging visit was 5.2 (0.6) years. We fitted multivariable linear regression models to investigate the relationship between cardiac parameters and traffic-related pollutants after adjusting for various confounders. Results: The studied cohort was 62±7 years old, and 46% were men. In fully adjusted models, particulate matter with an aerodynamic diameter <2.5 ÎŒm concentration was significantly associated with larger left ventricular end-diastolic volume and end-systolic volume (effect size = 0.82%, 95% CI, 0.09-1.55%, P=0.027; and effect size = 1.28%, 95% CI, 0.15-2.43%, P=0.027, respectively, per interquartile range increment in particulate matter with an aerodynamic diameter <2.5 ÎŒm) and right ventricular end-diastolic volume (effect size = 0.85%, 95% CI, 0.12-1.58%, P=0.023, per interquartile range increment in particulate matter with an aerodynamic diameter <2.5 ÎŒm). Likewise, higher nitrogen dioxide concentration was associated with larger biventricular volume. Distance from the major roads was the only metric associated with lower left ventricular mass (effect size = -0.74%, 95% CI, -1.3% to -0.18%, P=0.01, per interquartile range increment). Neither left and right atrial phenotypes nor left ventricular geometric remodeling patterns were influenced by the ambient pollutants. Conclusions: In a large asymptomatic population with no prevalent cardiovascular disease, higher past exposure to particulate matter with an aerodynamic diameter <2.5 ÎŒm and nitrogen dioxide was associated with cardiac ventricular dilatation, a marker of adverse remodeling that often precedes heart failure development.Drs Peterson, Neubauer, and Piechnik acknowledge the British Heart Foundation for funding the manual analysis to create a cardiovascular magnetic resonance imaging reference standard for the UK Biobank imaging resource in 5000 CMR scans (PG/14/89/31194). Dr Aung is supported by a Wellcome Trust Research Training Fellowship (203553/Z/16/Z). Drs Lee and Petersen acknowledge support from the National Institute for Health Research Barts Biomedical Research Center and from the “SmartHeart” Engineering and Physical Sciences Research Council program grant (EP/P001009/1). Drs Neubauer and Petersen are supported by the Oxford National Institute for Health Research Biomedical Research Center and the Oxford British Heart Foundation Center of Research Excellence. This project was enabled through access to the Medical Research Council eMedLab Medical Bioinformatics infrastructure, supported by the Medical Research Council (grant No. MR/L016311/1). Dr Fung is supported by The Medical College of Saint Bartholomew’s Hospital Trust, an independent registered charity that promotes and advances medical and dental education and research at Barts and The London School of Medicine and Dentistry. The UK Biobank was established by the Wellcome Trust medical charity, Medical Research Council, Department of Health, Scottish Government, and the Northwest Regional Development Agency. It has also received fundin
    • 

    corecore