109 research outputs found

    Evidence for the coexistence of low-dimensional magnetism and long-range order in Ca3CoRhO6

    Get PDF
    We report the results of neutron powder diffraction studies on the spin-chain compound Ca3CoRhO6 in the temperature range 3 to 293 K. Bragg peaks due to magnetic ordering start appearing below about 100 K. The most interesting observation is that there is a diffuse magnetic peak superimposed over the strongest magnetic Bragg peak. The diffuse magnetic intensity is observed below as well above 100 K. This finding provides a new insight into the physics of this compound as though the low-dimensional magnetic interaction coexists with long range magnetic order - a novel situation among quasi one-dimensional oxides.Comment: accepted by Eur. Phys. Let

    Stability of geometrically frustrated magnetic state of Ca3CoRhO6 to applications of positive and negative pressure

    Full text link
    The influence of negative chemical pressure induced by gradual replacement of Ca by Sr as well as of external pressure (up to 10 kbar) on the magnetism of Ca3CoRhO6 has been investigated by magnetization studies. It is found that the solid solution, Ca(3-x)Sr(x)CoRhO6, exists at least till about x= 1.0 without any change in the crystal structure. Apart from insensitivity of the spin-chain feature to volume expansion, the characteristic features of geometrical frustration interestingly appear at the same temperatures for all compositions, in sharp contrast to the response to Y substitution for Ca (reported previously). Interestingly, huge frequency dependence of ac susceptibility known for the parent compound persists for all compositions. We do not find a change in the properties under external pressure. The stability of the magnetic anomalies of this compound to the volume change (about 4%) is puzzling

    Crystal Field, Magnetic Anisotropy and Excitations in Rare-Earth Hexaborides

    Full text link
    We clarify the role of crystalline electric field (CEF) induced magnetic anisotropy in the ground state and spin-wave spectrum of cubic rare-earth materials with dominating isotropic magnetic exchange interactions. In particular we study the hexaboride NdB_6 which is shown to exhibit strong spin-quadrupolar coupling. The CEF scheme is analyzed and a non-collinear magnetization response is found. The spin orientation in the antiferromagnetically ordered ground-state is identified. Moreover, the spin excitations are evaluated and in agreement with inelastic neutron scattering a suppression of one of the two magnetic modes in the strong-coupling regime is predicted.Comment: 4 pages, 1 eps-figur

    Highly Dispersive Spin Excitations in the Chain Cuprate Li2CuO2

    Full text link
    We present an inelastic neutron scattering investigation of Li2CuO2 detecting the long sought quasi-1D magnetic excitations with a large dispersion along the CuO2-chains studied up to 25 meV. The total dispersion is governed by a surprisingly large ferromagnetic (FM) nearest-neighbor exchange integral J1=-228 K. An anomalous quartic dispersion near the zone center and a pronounced minimum near (0,0.11,0.5) r.l.u. (corresponding to a spiral excitation with a pitch angle about 41 degree point to the vicinity of a 3D FM-spiral critical point. The leading exchange couplings are obtained applying standard linear spin-wave theory. The 2nd neighbor inter-chain interaction suppresses a spiral state and drives the FM in-chain ordering below the Ne'el temperature. The obtained exchange parameters are in agreement with the results for a realistic five-band extended Hubbard Cu 3d O 2p model and L(S)DA+U predictions.Comment: 6 pages, 4 figures, submitted to Europhys. Let

    Elastic Properties and Magnetic Phase Diagrams of Dense Kondo Compound Ce0.75La0.25B6

    Full text link
    We have investigated the elastic properties of the cubic dense Kondo compound Ce0.75La0.25B6 by means of ultrasonic measurements. We have obtained magnetic fields vs temperatures (H-T) phase diagrams under magnetic fields along the crystallographic [001], [110] and [111] axes. An ordered phase IV showing the elastic softening of c44 locates in low temperature region between 1.6 and 1.1 K below 0.7 T in all field directions. The phase IV shows an isotropic nature with regard to the field directions, while the antiferro-magnetic phase III shows an anisotropic character. A remarkable softening of c44 and a spontaneous trigonal distortion εyz+εzx+εxy recently reported by Akatsu et al. [J. Phys. Soc. Jpn. 72 (2003) 205] in the phase IV favor a ferro-quadrupole (FQ) moment of Oyz+Ozx+Oxy induced by an octupole ordering.Comment: 9 figures, Strongly Correlated Electron

    4f-spin dynamics in La(2-x-y)Sr(x)Nd(y)CuO(4)

    Full text link
    We have performed inelastic magnetic neutron scattering experiments on La(2-x-y)Sr(x)Nd(y)CuO(4) in order to study the Nd 4f-spin dynamics at low energies. In all samples we find at high temperatures a quasielastic line (Lorentzian) with a line width which decreases on lowering the temperature. The temperature dependence of the quasielastic line width Gamma/2(T) can be explained with an Orbach-process, i.e. a relaxation via the coupling between crystal field excitations and phonons. At low temperatures the Nd-4f magnetic response S(Q,omega) correlates with the electronic properties of the CuO(2)-layers. In the insulator La(2-y)Nd(y)CuO(4) the quasielastic line vanishes below 80 K and an inelastic excitation occurs. This directly indicates the splitting of the Nd3+ ground state Kramers doublet due to the static antiferromagnetic order of the Cu moments. In La(1.7-x)Sr(x)Nd(0.3)CuO(4) with x = 0.12, 0.15 and La(1.4-x)Sr(x)Nd(0.6)CuO(4) with x = 0.1, 0.12, 0.15, 0.18 superconductivity is strongly suppressed. In these compounds we observe a temperature independent broad quasielastic line of Gaussian shape below T about 30 K. This suggests a distribution of various internal fields on different Nd sites and is interpreted in the frame of the stripe model. In La(1.8-y)Sr(0.2)Nd(y)CuO(4) (y = 0.3, 0.6) such a quasielastic broadening is not observed even at lowest temperature.Comment: 8 pages, 10 figures included, to appear in Phys. Rev.

    Meta-orbital Transition in Heavy-fermion Systems: Analysis by Dynamical Mean Field Theory and Self-consistent Renormalization Theory of Orbital Fluctuations

    Full text link
    We investigate a two-orbital Anderson lattice model with Ising orbital intersite exchange interactions by means of dynamical mean field theory combined with the static mean field approximation of the intersite orbital interactions. Focusing on Ce-based heavy-fermion compounds, we examine the orbital crossover between the two orbital states, when the total f-electron number per site n_f is n_f ~ 1. We show that a "meta-orbital" transition, at which the occupancy of the two orbitals changes steeply, occurs when the hybridization between the ground-state f-electron orbital and conduction electrons are smaller than that between the excited f-electron orbital and conduction electrons. Near the meta-orbital critical end point, the orbital fluctuations are enhanced, and couple with the charge fluctuations. A critical theory of the meta-orbital fluctuations is also developed by applying the self-consistent renormalization theory of itinerant electron magnetism to the orbital fluctuations. The critical end point, first-order transition and crossover are described within Gaussian approximations of orbital fluctuations. We discuss the relevance of our results to CeAl2, CeCu2Si2, CeCu2Ge2 and the related compounds, which all have low-lying crystalline-electric-field excited states.Comment: 11 pages, 6 figures, J. Phys. Soc. Jpn. 79, (2010) 11471

    Yb-Yb correlations and crystal-field effects in the Kondo insulator YbB12 and its solid solutions

    Full text link
    We have studied the effect of Lu substitution on the spin dynamics of the Kondo insulator YbB12 to clarify the origin of the spin-gap response previously observed at low temperature in this material. Inelastic neutron spectra have been measured in Yb1-xLuxB12 compounds for four Lu concentrations x = 0, 0.25, 0.90 and 1.0. The data indicate that the disruption of coherence on the Yb sublattice primarily affects the narrow peak structure occurring near 15-20 meV in pure YbB12, whereas the spin gap and the broad magnetic signal around 38 meV remain almost unaffected. It is inferred that the latter features reflect mainly local, single-site processes, and may be reminiscent of the inelastic magnetic response reported for mixed-valence intermetallic compounds. On the other hand, the lower component at 15 meV is most likely due to dynamic short-range magnetic correlations. The crystal-field splitting in YbB12 estimated from the Er3+ transitions measured in a Yb0.9Er0.1B12 sample, has the same order of magnitude as other relevant energy scales of the system and is thus likely to play a role in the form of the magnetic spectral response.Comment: 16 pages in pdf format, 9 figures. v. 2: coauthor list updated; extra details given in section 3.2 (pp. 6-7); one reference added; fig. 5 axis label change

    Valency of rare earths in RIn3 and RSn3: Ab initio analysis of electric-field gradients

    Full text link
    In RIn3 and RSn3 the rare earth (R) is trivalent, except for Eu and Yb, which are divalent. This was experimentally determined in 1977 by perturbed angular correlation measurements of the electric-field gradient on a 111Cd impurity. At that time, the data were interpreted using a point charge model, which is now known to be unphysical and unreliable. This makes the valency determination potentially questionable. We revisit these data, and analyze them using ab initio calculations of the electric-field gradient. From these calculations, the physical mechanism that is responsible for the influence of the valency on the electric-field gradient is derived. A generally applicable scheme to interpret electric-field gradients is used, which in a transparent way correlates the size of the field gradient with chemical properties of the system.Comment: 10 page
    corecore