5 research outputs found

    Performance of an endcap prototype of the Atlas accordion electromagnetic calorimeter

    Get PDF
    The design and construction of a lead-liquid argon endcap calorimeter prototype using an accordion geometry and conceived as a sector of the inner wheel of the endcap calorimeter of the future ATLAS experiment at the LHC is described. The performance obtained using electron beam data is presented. The main results are an energy resolution with a sampling term below 11%/E(GeV)11\%/\sqrt{E(\rm GeV)} and a small local constant term, a good linearity of the response with the incident energy and a global constant term of 0.8\% over an extended area in the rapidity range of 2.2η2.92.2\eta 2.9. These properties make the design suitable for the ATLAS electromagnetic endcap calorimeter

    Test beam results of a stereo preshower integrated in the liquid argon accordion calorimeter

    Get PDF
    This paper describes the construction of an integrated preshower within the RD3 liquid argon accordion calorimeter. It has a stereo view which enables the measurement of two transverse coordinates. The prototype was tested at CERN with electrons, photons and muons to validate its capability to work at LHC (Energy resolution, impact point resolution, angular resolution, π o Îł rejection). (Elsevier

    Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    No full text
    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS, These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300 GeV at an incident angle a of about 11 degrees is well-described by the expression sigma/E = ((46.5 +/- 6.0)%/root E + (1.2 +/- 0.3)%) + (3.2 +/- 0.4) GeV/E. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied

    Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    Get PDF
    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300 GeV at an incident angle Ξ of about 11c is well-described by the expression σ/E = ((46.5 ± 6.0)%/√E + (1.2 ± 0.3)%) ⊗ (3.2 ± 0.4)GeV/E. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied

    Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    Get PDF
    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300 GeV at an incident angle Ξ of about 11c is well-described by the expression σ/E = ((46.5 ± 6.0)%/√E + (1.2 ± 0.3)%) ⊗ (3.2 ± 0.4)GeV/E. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied
    corecore