12 research outputs found
Understanding psychotic-like experiences in children in the context of dimensions of psychological problems
Introduction: Although psychotic behaviors can be difficult to assess in children, early identification of children at high risk for the emergence of psychotic symptoms may facilitate the prevention of related disorders. Psychotic-like experiences (PLEs), or subthreshold thought and perceptual disturbances, could be early manifestations of psychosis that may predict a future diagnosis of a psychosis-related disorder or nonspecific correlates of a wide range of psychological problems. Additional research is needed regarding how PLEs map onto dimensions of psychopathology in children. Methods: In the present study, we examined the association between PLEs and general and specific dimensions of psychological problems in a sample of 10,692 children from the Adolescent Brain Cognitive Development Study (ABCD Study). Results: The results of this study showed that self-reported PLEs were associated with a general psychopathology factor and an ADHD factor, which were defined in hierarchical models of parent-rated psychological problems. Discussion: These findings suggest that PLEs are broadly associated with a wide range of psychological problems through the general psychopathology factor even before psychotic disorders typically manifest. This study supports the need for longitudinal analyses of future waves of the ABCD Study to determine if PLEs can detect children at high risk for serious psychological problems in adulthood.</p
Multivariate analytical approaches for investigating brain-behavior relationships
BackgroundMany studies of brain-behavior relationships rely on univariate approaches where each variable of interest is tested independently, which does not allow for the simultaneous investigation of multiple correlated variables. Alternatively, multivariate approaches allow for examining relationships between psychopathology and neural substrates simultaneously. There are multiple multivariate methods to choose from that each have assumptions which can affect the results; however, many studies employ one method without a clear justification for its selection. Additionally, there are few studies illustrating how differences between methods manifest in examining brain-behavior relationships. The purpose of this study was to exemplify how the choice of multivariate approach can change brain-behavior interpretations.MethodWe used data from 9,027 9- to 10-year-old children from the Adolescent Brain Cognitive DevelopmentSM Study (ABCD Study®) to examine brain-behavior relationships with three commonly used multivariate approaches: canonical correlation analysis (CCA), partial least squares correlation (PLSC), and partial least squares regression (PLSR). We examined the associations between psychopathology dimensions including general psychopathology, attention-deficit/hyperactivity symptoms, conduct problems, and internalizing symptoms with regional brain volumes.ResultsThe results of CCA, PLSC, and PLSR showed both consistencies and differences in the relationship between psychopathology symptoms and brain structure. The leading significant component yielded by each method demonstrated similar patterns of associations between regional brain volumes and psychopathology symptoms. However, the additional significant components yielded by each method demonstrated differential brain-behavior patterns that were not consistent across methods.ConclusionHere we show that CCA, PLSC, and PLSR yield slightly different interpretations regarding the relationship between child psychopathology and brain volume. In demonstrating the divergence between these approaches, we exemplify the importance of carefully considering the method’s underlying assumptions when choosing a multivariate approach to delineate brain-behavior relationships
Early life stress and functional network topology in children
Brain networks are continuously modified throughout development, yet this plasticity can also make functional networks vulnerable to early life stress. Little is currently known about the effect of early life stress on the functional organization of the brain. The current study investigated the association between environmental stressors and network topology using data from the Adolescent Brain Cognitive DevelopmentSM (ABCD®) Study. Hierarchical modeling identified a general factor of environmental stress, representing the common variance across multiple stressors, as well as four subfactors including familial dynamics, interpersonal support, neighborhood SES deprivation, and urbanicity. Functional network topology metrics were obtained using graph theory at rest and during tasks of reward processing, inhibition, and affective working memory. The general factor of environmental stress was associated with less specialization of networks, represented by lower modularity at rest. Local metrics indicated that general environmental stress was also associated with less efficiency in the subcortical-cerebellar and visual networks while showing greater efficiency in the default mode network at rest. Subfactors of environmental stress were associated with differences in specialization and efficiency in select networks. The current study illustrates that a wide range of stressors in a child’s environment are associated with differences in brain network topology
Recommended from our members
Mapping potential pathways from polygenic liability through brain structure to psychological problems across the transition to adolescence
Background: We used a polygenic score for externalizing behavior (extPGS) and structural MRI to examine potential pathways from genetic liability to conduct problems via the brain across the adolescent transition. Methods: Three annual assessments of child conduct problems, attention-deficit/hyperactivity problems, and internalizing problems were conducted across across 9-13 years of age among 4,475 children of European ancestry in the Adolescent Brain Cognitive DevelopmentSM Study (ABCD Study®). Results: The extPGS predicted conduct problems in each wave (R2 = 2.0%-2.9%). Bifactor models revealed that the extPRS predicted variance specific to conduct problems (R2 = 1.7%-2.1%), but also variance that conduct problems shared with other measured problems (R2 = .8%-1.4%). Longitudinally, extPGS predicted levels of specific conduct problems (R2 = 2.0%), but not their slope of change across age. The extPGS was associated with total gray matter volume (TGMV; R2 = .4%) and lower TGMV predicted both specific conduct problems (R2 = 1.7%-2.1%) and the variance common to all problems in each wave (R2 = 1.6%-3.1%). A modest proportion of the polygenic liability specific to conduct problems in each wave was statistically mediated by TGMV. Conclusions: Across the adolescent transition, the extPGS predicted both variance specific to conduct problems and variance shared by all measured problems. The extPGS also was associated with TGMV, which robustly predicted conduct problems. Statistical mediation analyses suggested the hypothesis that polygenic variation influences individual differences in brain development that are related to the likelihood of conduct problems during the adolescent transition, justifying new research to test this causal hypothesis.</p
Insights into the accuracy of social scientists' forecasts of societal change
How well can social scientists predict societal change, and what processes underlie their predictions? To answer these questions, we ran two forecasting tournaments testing the accuracy of predictions of societal change in domains commonly studied in the social sciences: ideological preferences, political polarization, life satisfaction, sentiment on social media, and gender-career and racial bias. After we provided them with historical trend data on the relevant domain, social scientists submitted pre-registered monthly forecasts for a year (Tournament 1; N = 86 teams and 359 forecasts), with an opportunity to update forecasts on the basis of new data six months later (Tournament 2; N = 120 teams and 546 forecasts). Benchmarking forecasting accuracy revealed that social scientists' forecasts were on average no more accurate than those of simple statistical models (historical means, random walks or linear regressions) or the aggregate forecasts of a sample from the general public (N = 802). However, scientists were more accurate if they had scientific expertise in a prediction domain, were interdisciplinary, used simpler models and based predictions on prior data. How accurate are social scientists in predicting societal change, and what processes underlie their predictions? Grossmann et al. report the findings of two forecasting tournaments. Social scientists' forecasts were on average no more accurate than those of simple statistical models
Insights into accuracy of social scientists' forecasts of societal change
How well can social scientists predict societal change, and what processes underlie their predictions? To answer these questions, we ran two forecasting tournaments testing accuracy of predictions of societal change in domains commonly studied in the social sciences: ideological preferences, political polarization, life satisfaction, sentiment on social media, and gender-career and racial bias. Following provision of historical trend data on the domain, social scientists submitted pre-registered monthly forecasts for a year (Tournament 1; N=86 teams/359 forecasts), with an opportunity to update forecasts based on new data six months later (Tournament 2; N=120 teams/546 forecasts). Benchmarking forecasting accuracy revealed that social scientists’ forecasts were on average no more accurate than simple statistical models (historical means, random walk, or linear regressions) or the aggregate forecasts of a sample from the general public (N=802). However, scientists were more accurate if they had scientific expertise in a prediction domain, were interdisciplinary, used simpler models, and based predictions on prior data