713 research outputs found
Receipt from John E. Leddy to Ogden Goelet
https://digitalcommons.salve.edu/ochre-court/1229/thumbnail.jp
Balance differences in people with Parkinson disease with and without freezing of gait
Published in final edited form as:
Gait Posture. 2015 September ; 42(3): 306–309. doi:10.1016/j.gaitpost.2015.06.007.BACKGROUND:
Freezing of gait (FOG) is a relatively common and remarkably disabling impairment associated with Parkinson disease (PD). Laboratory-based measures indicate that individuals with FOG (PD+FOG) have greater balance deficits than those without FOG (PD-FOG). Whether such differences also can be detected using clinical balance tests has not been investigated. We sought to determine if balance and specific aspects of balance, measured using Balance Evaluation Systems Test (BESTest), differs between PD+FOG and PD-FOG. Furthermore, we aimed to determine if time-efficient clinical balance measures (i.e. Mini-BESTest, Berg Balance Scale (BBS)) could detect balance differences between PD+FOG and PD-FOG.
METHODS:
Balance of 78 individuals with PD, grouped as either PD+FOG (n=32) or PD-FOG (n=46), was measured using the BESTest, Mini-BESTest, and BBS. Between-groups comparisons were conducted for these measures and for the six sections of the BESTest using analysis of covariance. A PD composite score was used as a covariate.
RESULTS:
Controlling for motor sign severity, PD duration, and age, PD+FOG had worse balance than PD-FOG when measured using the BESTest (p=0.008, F=7.35) and Mini-BESTest (p=0.002, F=10.37), but not the BBS (p=0.27, F=1.26). BESTest section differences were noted between PD+FOG and PD-FOG for reactive postural responses (p<0.001, F=14.42) and stability in gait (p=0.003, F=9.18).
CONCLUSIONS:
The BESTest and Mini-BESTest, which specifically assessed reactive postural responses and stability in gait, were more likely than the BBS to detect differences in balance between PD+FOG and PD-FOG. Because it is more time efficient to administer, the Mini-BESTest may be the preferred tool for assessing balance deficits associated with FOG.This study was conducted with funding from the Davis Phinney Foundation, Parkinson's Disease Foundation, NIH R01 NS077959, NIH UL1 TR000448, Greater St. Louis American Parkinson Disease Association (APDA), APDA Center for Advanced PD Research at Washington University in St. Louis. The funding sources had no role in the study design, in the collection, analysis and interpretation of data; in the writing of the manuscript; or in the decision to submit the manuscript for publication. (Davis Phinney Foundation; Parkinson's Disease Foundation; R01 NS077959 - NIH; UL1 TR000448 - NIH; Greater St. Louis American Parkinson Disease Association (APDA); APDA Center for Advanced PD Research at Washington University in St. Louis
Are the average gait speeds during the 10 meter and 6 minute walk tests redundant in Parkinson disease?
Published in final edited form as:
Gait Posture. 2017 February ; 52: 178–182. doi:10.1016/j.gaitpost.2016.11.033.We investigated the relationships between average gait speed collected with the 10Meter Walk Test (Comfortable and Fast) and 6Minute Walk Test (6MWT) in 346 people with Parkinson disease (PD) and how the relationships change with increasing disease severity. Pearson correlation and linear regression analyses determined relationships between 10Meter Walk Test and 6MWT gait speed values for the entire sample and for sub-samples stratified by Hoehn & Yahr (H&Y) stage I (n=53), II (n=141), III (n=135) and IV (n=17). We hypothesized that redundant tests would be highly and significantly correlated (i.e. r>0.70, p<0.05) and would have a linear regression model slope of 1 and intercept of 0. For the entire sample, 6MWT gait speed was significantly (p<0.001) related to the Comfortable 10 Meter Walk Test (r=0.75) and Fast 10Meter Walk Test (r=0.79) gait speed, with 56% and 62% of the variance in 6MWT gait speed explained, respectively. The regression model of 6MWT gait speed predicted by Comfortable 10 Meter Walk gait speed produced slope and intercept values near 1 and 0, respectively, especially for participants in H&Y stages II-IV. In contrast, slope and intercept values were further from 1 and 0, respectively, for the Fast 10Meter Walk Test. Comfortable 10 Meter Walk Test and 6MWT gait speeds appeared to be redundant in people with moderate to severe PD, suggesting the Comfortable 10 Meter Walk Test can be used to estimate 6MWT distance in this population.This study was funded by the Davis Phinney Foundation, the Parkinson's Disease Foundation, and the National Institutes of Health (R01 NS077959, K12 HD055931, UL1 TR000448). The funding sources had no input related to study design, data collection, or decision to submit for publication. (Davis Phinney Foundation; Parkinson's Disease Foundation; R01 NS077959 - National Institutes of Health; K12 HD055931 - National Institutes of Health; UL1 TR000448 - National Institutes of Health
External validation of a simple clinical tool used to predict falls in people with Parkinson disease
Published in final edited form as:
Parkinsonism Relat Disord. 2015 August ; 21(8): 960–963. doi:10.1016/j.parkreldis.2015.05.008.BACKGROUND: Assessment of fall risk in an individual with Parkinson disease (PD) is a critical yet often time consuming component of patient care. Recently a simple clinical prediction tool based only on fall history in the previous year, freezing of gait in the past month, and gait velocity <1.1 m/s was developed and accurately predicted future falls in a sample of individuals with PD. METHODS: We sought to externally validate the utility of the tool by administering it to a different cohort of 171 individuals with PD. Falls were monitored prospectively for 6 months following predictor assessment. RESULTS: The tool accurately discriminated future fallers from non-fallers (area under the curve [AUC] = 0.83; 95% CI 0.76–0.89), comparable to the developmental study. CONCLUSION: The results validated the utility of the tool for allowing clinicians to quickly and accurately identify an individual's risk of an impending fall.Davis Phinney Foundation, Parkinson Disease Foundation, NIH, APDA. (Davis Phinney Foundation; Parkinson Disease Foundation; NIH; APDA
Fat intake and injury in female runners
<p>Abstract</p> <p>Background</p> <p>Our purpose was to determine the relationship between energy intake, energy availability, dietary fat and lower extremity injury in adult female runners. We hypothesized that runners who develop overuse running-related injuries have lower energy intakes, lower energy availability and lower fat intake compared to non-injured runners.</p> <p>Methods</p> <p>Eighty-six female subjects, running a minimum of 20 miles/week, completed a food frequency questionnaire and informed us about injury incidence over the next year.</p> <p>Results</p> <p>Injured runners had significantly lower intakes of total fat (63 ± 20 vs. 80 ± 50 g/d) and percentage of kilocalories from fat (27 ± 5 vs. 30 ± 8 %) compared with non-injured runners. A logistic regression analysis found that fat intake was the best dietary predictor, correctly identifying 64% of future injuries. Lower energy intake and lower energy availability approached, but did not reach, a significant association with overuse injury in this study.</p> <p>Conclusion</p> <p>Fat intake is likely associated with injury risk in female runners. By documenting these associations, better strategies can be developed to reduce running injuries in women.</p
Assimilable Organic Carbon (AOC) in Soil Water Extracts Using Vibrio harveyi BB721 and Its Implication for Microbial Biomass
Assimilable organic carbon (AOC) is commonly used to measure the growth potential of microorganisms in water, but has not yet been investigated for measuring microbial growth potential in soils. In this study, a simple, rapid, and non-growth based assay to determine AOC in soil was developed using a naturally occurring luminous strain Vibrio harveyi BB721 to determine the fraction of low molecular weight organic carbon in soil water extract. Calibration of the assay was achieved by measuring the luminescence intensity of starved V. harveyi BB721 cells in the late exponential phase with a concentration range from 0 to 800 µg l−1 glucose (equivalent to 0–16.0 mg glucose C kg−1 soil) with the detection limit of 10 µg l−1 equivalent to 0.20 mg glucose C kg−1 soil. Results showed that bioluminescence was proportional to the concentration of glucose added to soil. The luminescence intensity of the cells was highly pH dependent and the optimal pH was about 7.0. The average AOC concentration in 32 soils tested was 2.9±2.2 mg glucose C kg−1. Our data showed that AOC levels in soil water extracts were significantly correlated (P<0.05) with microbial biomass determined as microbial biomass carbon, indicating that the AOC concentrations determined by the method developed might be a good indicator of soil microbial biomass. Our findings provide a new approach that may be used to determine AOC in environmental samples using a non-growth bioluminescence based assay. Understanding the levels of AOC in soil water extract provides new insights into our ability to estimate the most available carbon pool to bacteria in soil that may be easily assimilated into cells for many metabolic processes and suggest possible the links between AOC, microbial regrowth potential, and microbial biomass in soils
Comparative utility of the BESTest, mini-BESTest, and brief-BESTest for predicting falls in individuals with Parkinson disease: A cohort study
BACKGROUND: The newly developed Brief–Balance Evaluation System Test (Brief-BESTest) may be useful for measuring balance and predicting falls in individuals with Parkinson disease (PD). OBJECTIVES: The purposes of this study were: (1) to describe the balance performance of those with PD using the Brief-BESTest, (2) to determine the relationships among the scores derived from the 3 versions of the BESTest (ie, full BESTest, Mini-BESTest, and Brief-BESTest), and (3) to compare the accuracy of the Brief-BESTest with that of the Mini-BESTest and BESTest in identifying recurrent fallers among people with PD. DESIGN: This was a prospective cohort study. METHODS: Eighty participants with PD completed a baseline balance assessment. All participants reported a fall history during the previous 6 months. Fall history was again collected 6 months (n=51) and 12 months (n=40) later. RESULTS: At baseline, participants had varying levels of balance impairment, and Brief-BESTest scores were significantly correlated with Mini-BESTest (r=.94, P<.001) and BESTest (r=.95, P<.001) scores. Six-month retrospective fall prediction accuracy of the Brief-BESTest was moderately high (area under the curve [AUC]=0.82, sensitivity=0.76, and specificity=0.84). Prospective fall prediction accuracy over 6 months was similarly accurate (AUC=0.88, sensitivity=0.71, and specificity=0.87), but was less sensitive over 12 months (AUC=0.76, sensitivity=0.53, and specificity=0.93). LIMITATIONS: The sample included primarily individuals with mild to moderate PD. Also, there was a moderate dropout rate at 6 and 12 months. CONCLUSIONS: All versions of the BESTest were reasonably accurate in identifying future recurrent fallers, especially during the 6 months following assessment. Clinicians can reasonably rely on the Brief-BESTest for predicting falls, particularly when time and equipment constraints are of concern
- …