1,933 research outputs found

    Competitive Advantage from the World Wide Web

    Get PDF
    Research has suggested that organizations implement World Wide Web sites in order to gain competitive advantage. This research-in-progress uses CAPITA, an instrument for measuring competitive advantage, to determine how organizations seek to use the Web for competitive advantage and how well they succeed

    Ground-based follow-up observations of TRAPPIST-1 transits in the near-infrared

    Get PDF
    The TRAPPIST-1 planetary system is a favorable target for the atmospheric characterization of temperate earth-sized exoplanets by means of transmission spectroscopy with the forthcoming James Webb Space Telescope (JWST). A possible obstacle to this technique could come from the photospheric heterogeneity of the host star that could affect planetary signatures in the transit transmission spectra. To constrain further this possibility, we gathered an extensive photometric data set of 25 TRAPPIST-1 transits observed in the near-IR J band (1.2 μ\mum) with the UKIRT and the AAT, and in the NB2090 band (2.1 μ\mum) with the VLT during the period 2015-2018. In our analysis of these data, we used a special strategy aiming to ensure uniformity in our measurements and robustness in our conclusions. We reach a photometric precision of 0.003\sim0.003 (RMS of the residuals), and we detect no significant temporal variations of transit depths of TRAPPIST-1 b, c, e, and g over the period of three years. The few transit depths measured for planets d and f hint towards some level of variability, but more measurements will be required for confirmation. Our depth measurements for planets b and c disagree with the stellar contamination spectra originating from the possible existence of bright spots of temperature 4500 K. We report updated transmission spectra for the six inner planets of the system which are globally flat for planets b and g and some structures are seen for planets c, d, e, and f.Comment: accepted for publication in MNRA

    Quantum Hall effect anomaly and collective modes in the magnetic-field-induced spin-density-wave phases of quasi-one-dimensional conductors

    Full text link
    We study the collective modes in the magnetic-field-induced spin-density-wave (FISDW) phases experimentally observed in organic conductors of the Bechgaard salts family. In phases that exhibit a sign reversal of the quantum Hall effect (Ribault anomaly), the coexistence of two spin-density waves gives rise to additional collective modes besides the Goldstone modes due to spontaneous translation and rotation symmetry breaking. These modes strongly affect the charge and spin response functions. We discuss some experimental consequences for the Bechgaard salts.Comment: Final version (LaTex, 8 pages, no figure), to be published in Europhys. Let

    Data Processing and Experimental Design for Micrometeorite Impacts in Small Bodies

    Get PDF
    Comets and asteroids have been altered from their original "pristine" state by impacts occurring throughout their 4.5 billion year lives: [1]. Proof of shock deformation has been detected in the crystal structure of several Stardust samples from Comet Wild 2 [2, 3]. Analyses indicated that the planar dislocations in the crystal structure of the minerals had been imparted by impacts sustained during their lives, and not due to the aerogel capture process. Distortions to crystal structure also affect the ideal absorption spectra in the infrared, and [4], thus providing indirect evidence of its impact history and a means of remotely investigating the impact history of small bodies through comparing laboratory spectra with spectra observed by telescopes or spacecraft. -The effects of impacts propagating shock waves through minerals were investigated through laboratory impact experiments. Utilizing NASA Johnson Space Center's Experimental Impact Laboratory, projectiles were fired from the vertical gun at velocities ranging from 2.0 to 2.8 km/sec, projected impact velocities between Kuiper Belt Objects. Two types of projectiles were used, including spherical alumina ceramic, whose density mimics that of rock, and cylinders made from the same material that they impacted. The target materials chosen for testing included: OLIVINES forsterite (Mg2SiO4) and fayalite, Fe2SiO4); PYROXENES enstatite (Mg2Si2O6) and diopside (MgCaSi2O6); and CARBONATES magnesite (MgCO3) and siderite (FeCO3). Targets were impacted at either 25 C or cooled to -20 C to examine the effects of temperature, if any, on lattice distortions during the shock propagation. As comets and asteroids can undergo a wide range of temperatures in their orbital lifetimes, the effect of temperature on the equation of state of minerals being shocked needs to be examined for interpreting the results of these experiments. The porosity of the target mineral is varied by either grinding it into a powder/granular texture or as whole mineral rocks to investigate the differences in shock propagation when voids are present. By varying velocity, ambient temperature, and porosity, we can investigate different variables affecting impacts in the solar system. -Data indicates that there is a non-linear relationship between peak shock pressure and the variation in infrared spectral absorbances by the distorted crystal structure. The maximum variability occurs around 37 GPa in enstatite and forsterite. The particle size distribution of the impacted material similarly changes with velocity/peak shock pressure. -The experiments described above are designed to measure the near- to mid-IR effects from these changes to the mineral structure. See Lederer et al., this meeting for additional experimental results

    Orbital M1 versus E2 strength in deformed nuclei: A new energy weighted sum rule

    Get PDF
    Within the unified model of Bohr and Mottelson we derive the following linear energy weighted sum rule for low energy orbital 1+^+ excitations in even-even deformed nuclei S_{\rm LE}^{\rm lew} (M_1^{\rm orb}) \cong (6/5) \epsilon (B(E2; 0^+_1 \rightarrow 2_1^+ K=0)/Z e^2^2) \mu^2_N with B(E2) the E2 strength for the transition from the ground state to the first excited state in the ground state rotational band, the charge r.m.s. radius squared and ϵ\epsilon the binding energy per nucleon in the nuclear ground state. It is shown that this energy weighted sum rule is in good agreement with available experimental data. The sum rule is derived using a simple ansatz for the intrinsic ground state wave function that predicts also high energy 1+^+ strength at 2ω\hbar \omega carrying 50\% of the total m1m_1 moment of the orbital M1 operator.Comment: REVTEX (3.0), 9 pages, RU924

    Collisional Effects on Magnesium-rich Minerals found in Comets and Asteroids

    Get PDF
    While generally touted to be the least-altered bodies remaining from the age of the solar system's formation, comets and asteroids have undergone evolutionary processing throughout the 4.5-billion-year lifetime of the solar system. They have suffered the effects of collisions by impactors ranging in size from micrometeoroids to other comets and asteroids. As such, we must ask ourselves: can we detect these evolutionary effects remotely through telescopic observations? With this in mind, a suite of experiments were conducted, impacting magnesium-rich minerals as analogues to those that have been detected in the spectra of both asteroid surfaces and in the dust of cometary comae, including forsterite (Mg2SiO4, olivine), orthoenstatite (Mg2SiO3, pyroxene), diopside (MgCaSi2O6, monoclinic pyroxene), and magnesite (MgCO3, carbonate). These minerals were impacted at velocities ranging from 2.0 km/s to 2.8 km/s using the vertical gun in the Experimental Impact Laboratory (EIL) at NASA Johnson Space Center. These speeds mimic typical velocities of impacts occurring in the Kuiper belt [1]. Two classes of projectile were used: spherical alumina ceramic, whose density mimics that of rock, and cylinders made from the same material that they impacted (e.g., forsterite impactors for forsterite targets, etc.). The peak shock pressure varies significantly, depending on the target and impactor materials and the velocity; thus, shock effects differed in targets impacted at the same velocity but with compositionally different projectiles. The results indicate both: (a) how varying the impactor-density might change the outcome from a scientific viewpoint, as well as (b) possible contamination effects of the ceramic projectile in the resultant spectra of the target minerals from an experimental perspective. Temperature effects were also investigated by impacting samples at both 25 deg. and -25 deg. to: (a) probe whether the varying temperatures experienced by small bodies plays a role in the resultant spectra, and (b) constrain necessary experimental parameters. Analysis of Fourier Transform Infrared (FTIR) spectra obtained from the experimentally shocked materials shows clear indications of spectral shifts in wavelength, as well as a change in relative peak strengths of the spectral signatures at one wavelength compared with another, in all minerals except magnesite. Samples of the forsterite and orthoenstatite that displayed the spectral changes were examined with a transmission electron microscope, which revealed evidence of planar dislocations. The density of the dislocations in the experimentally shocked minerals mimicked the dislocation densities measured in both forsterite and enstatite grains recovered from Comet Wild 2 by the Stardust mission [2, 3, 4]. Further discussion on analyses of peak shock pressure and temperature-dependent effects can be found in Jensen et al., this meetin

    Quantum interference from sums over closed paths for electrons on a three-dimensional lattice in a magnetic field: total energy, magnetic moment, and orbital susceptibility

    Full text link
    We study quantum interference effects due to electron motion on a three-dimensional cubic lattice in a continuously-tunable magnetic field of arbitrary orientation and magnitude. These effects arise from the interference between magnetic phase factors associated with different electron closed paths. The sums of these phase factors, called lattice path-integrals, are ``many-loop" generalizations of the standard ``one-loop" Aharonov-Bohm-type argument. Our lattice path integral calculation enables us to obtain various important physical quantities through several different methods. The spirit of our approach follows Feynman's programme: to derive physical quantities in terms of ``sums over paths". From these lattice path-integrals we compute analytically, for several lengths of the electron path, the half-filled Fermi-sea ground-state energy of noninteracting spinless electrons in a cubic lattice. Our results are valid for any strength of the applied magnetic field in any direction. We also study in detail two experimentally important quantities: the magnetic moment and orbital susceptibility at half-filling, as well as the zero-field susceptibility as a function of the Fermi energy.Comment: 14 pages, RevTe
    corecore