12,884 research outputs found
Algebraic characterization of the Wess-Zumino consistency conditions in gauge theories
A new way of solving the descent equations corresponding to the Wess-Zumino
consistency conditions is presented. The method relies on the introduction of
an operator which allows to decompose the exterior space-time
derivative as a commutator. The case of the Yang-Mills theories is
treated in detail.Comment: 16 pages, UGVA-DPT 1992/08-781 to appear in Comm. Math. Phy
Effect of Caffeine on the Growth of Streptococcus mutans
poster abstractCaffeine consumption is a staple of the typical adult diet. Previous research has demonstrated many possible health benefits of regular consumption of caffeine-containing beverages such as coffee and tea. Coffee may contain up 200 mg caffeine/cup (84 ÎĽg/ml). This study investigated the correlation between oral health and caffeine consumption by observing the effects of the compound on the growth of a leading contributor to tooth decay, Streptococcus mutans. Assays were performed to examine the effect of different concentrations of caffeine on both the planktonic and biofilm growth of the bacteria. Caffeine concentrations of 200 and 400 ÎĽg/ml demonstrated significant biofilm formation enhancement (p<0.05). Contrastingly, concentrations from 31.25 through 100 ÎĽg/ml caused a slight, significant inhibition in biofilm formation. Planktonic growth of S. mutans was marginally inhibited in concentrations of 31.25 through 200 ÎĽg/ml. The results of this study indicate a potential for adverse side effects to oral health when caffeine is consumed in high concentrations. Lower concentrations such as those naturally found in coffee and tea may inhibit formation of biofilm and dental plaque, thereby promoting good oral health
Thermodynamic Studies of [H_(2)Rh(diphosphine)_2]^+ and [HRh(diphosphine)_(2)(CH_(3)CN)]^(2+) Complexes in Acetonitrile
Thermodynamic studies of a series of [H_(2)Rh(PP)_2]^+ and [HRh(PP)_(2)(CH_(3)CN)]^(2+) complexes have been carried out in acetonitrile. Seven different diphosphine (PP) ligands were selected to allow variation of the electronic properties of the ligand substituents, the cone angles, and the natural bite angles (NBAs). Oxidative addition of H_2 to [Rh(PP)_2]^+ complexes is favored by diphosphine ligands with large NBAs, small cone angles, and electron donating substituents, with the NBA being the dominant factor. Large pK_a values for [HRh(PP)_(2)(CH_(3)CN)]^(2+) complexes are favored by small ligand cone angles, small NBAs, and electron donating substituents with the cone angles playing a major role. The hydride donor abilities of [H_(2)Rh(PP)_2]^+ complexes increase as the NBAs decrease, the cone angles decrease, and the electron donor abilities of the substituents increase. These results indicate that if solvent coordination is involved in hydride transfer or proton transfer reactions, the observed trends can be understood in terms of a combination of two different steric effects, NBAs and cone angles, and electron-donor effects of the ligand substituents
Vibrational dynamics of confined granular material
By means of two-dimensional contact dynamics simulations, we analyze the
vibrational dynamics of a confined granular layer in response to harmonic
forcing. We use irregular polygonal grains allowing for strong variability of
solid fraction. The system involves a jammed state separating passive (loading)
and active (unloading) states. We show that an approximate expression of the
packing resistance force as a function of the displacement of the free
retaining wall from the jamming position provides a good description of the
dynamics. We study in detail the scaling of displacements and velocities with
loading parameters. In particular, we find that, for a wide range of
frequencies, the data collapse by scaling the displacements with the inverse
square of frequency, the inverse of the force amplitude and the square of
gravity. Interestingly, compaction occurs during the extension of the packing,
followed by decompaction in the contraction phase. We show that the mean
compaction rate increases linearly with frequency up to a characteristic
frequency and then it declines in inverse proportion to frequency. The
characteristic frequency is interpreted in terms of the time required for the
relaxation of the packing through collective grain rearrangements between two
equilibrium states
Local Optimal Sets and Bounded Archiving on Multi-objective NK-Landscapes with Correlated Objectives
The properties of local optimal solutions in multi-objective combinatorial
optimization problems are crucial for the effectiveness of local search
algorithms, particularly when these algorithms are based on Pareto dominance.
Such local search algorithms typically return a set of mutually nondominated
Pareto local optimal (PLO) solutions, that is, a PLO-set. This paper
investigates two aspects of PLO-sets by means of experiments with Pareto local
search (PLS). First, we examine the impact of several problem characteristics
on the properties of PLO-sets for multi-objective NK-landscapes with correlated
objectives. In particular, we report that either increasing the number of
objectives or decreasing the correlation between objectives leads to an
exponential increment on the size of PLO-sets, whereas the variable correlation
has only a minor effect. Second, we study the running time and the quality
reached when using bounding archiving methods to limit the size of the archive
handled by PLS, and thus, the maximum size of the PLO-set found. We argue that
there is a clear relationship between the running time of PLS and the
difficulty of a problem instance.Comment: appears in Parallel Problem Solving from Nature - PPSN XIII,
Ljubljana : Slovenia (2014
Local Optimal Sets and Bounded Archiving on Multi-objective NK-Landscapes with Correlated Objectives
The properties of local optimal solutions in multi-objective combinatorial
optimization problems are crucial for the effectiveness of local search
algorithms, particularly when these algorithms are based on Pareto dominance.
Such local search algorithms typically return a set of mutually nondominated
Pareto local optimal (PLO) solutions, that is, a PLO-set. This paper
investigates two aspects of PLO-sets by means of experiments with Pareto local
search (PLS). First, we examine the impact of several problem characteristics
on the properties of PLO-sets for multi-objective NK-landscapes with correlated
objectives. In particular, we report that either increasing the number of
objectives or decreasing the correlation between objectives leads to an
exponential increment on the size of PLO-sets, whereas the variable correlation
has only a minor effect. Second, we study the running time and the quality
reached when using bounding archiving methods to limit the size of the archive
handled by PLS, and thus, the maximum size of the PLO-set found. We argue that
there is a clear relationship between the running time of PLS and the
difficulty of a problem instance.Comment: appears in Parallel Problem Solving from Nature - PPSN XIII,
Ljubljana : Slovenia (2014
Damping rate of plasmons and photons in a degenerate nonrelativistic plasma
A calculation is presented of the plasmon and photon damping rates in a dense
nonrelativistic plasma at zero temperature, following the resummation program
of Braaten-Pisarski. At small soft momentum , the damping is dominated by scattering processes corresponding to double longitudinal Landau
damping. The dampings are proportional to , where
is the Fermi velocity.Comment: 9 pages, 2 figure
Algebraic structure of gravity in Ashtekar variables
The BRST transformations for gravity in Ashtekar variables are obtained by
using the Maurer-Cartan horizontality conditions. The BRST cohomology in
Ashtekar variables is calculated with the help of an operator
introduced by S.P. Sorella, which allows to decompose the exterior derivative
as a BRST commutator. This BRST cohomology leads to the differential invariants
for four-dimensional manifolds.Comment: 19 pages, report REF. TUW 94-1
Physical Study by Surface Characterizations of Sarin Sensor on the Basis of Chemically Functionalized Silicon Nanoribbon Field Effect Transistor
Surface characterizations of an organophosphorus (OP) gas detector based on
chemically functionalized silicon nanoribbon field-effect transistor (SiNR-FET)
were performed by Kelvin Probe Force Microscopy (KPFM) and ToF-SIMS, and
correlated with changes in the current-voltage characteristics of the devices.
KPFM measurements on FETs allow (i) to investigate the contact potential
difference (CPD) distribution of the polarized device as function of the gate
voltage and the exposure to OP traces and, (ii) to analyze the CPD hysteresis
associated to the presence of mobile ions on the surface. The CPD measured by
KPFM on the silicon nanoribbon was corrected due to side capacitance effects in
order to determine the real quantitative surface potential. Comparison with
macroscopic Kelvin probe (KP) experiments on larger surfaces was carried out.
These two approaches were quantitatively consistent. An important increase of
the CPD values (between + 399 mV and + 302 mV) was observed after the OP sensor
grafting, corresponding to a decrease of the work function, and a weaker
variation after exposure to OP (between - 14 mV and - 61 mV) was measured.
Molecular imaging by ToF-SIMS revealed OP presence after SiNR-FET exposure. The
OP molecules were essentially localized on the Si-NR confirming effectiveness
and selectivity of the OP sensor. A prototype was exposed to Sarin vapors and
succeeded in the detection of low vapor concentrations (40 ppm).Comment: Paper and supporting information, J. Phys. Chem. C, 201
Growth of a dynamical correlation length in an aging superspin glass
We report on zero field cooled magnetization relaxation experiments on a
concen- trated frozen ferrofluid exhibiting a low temperature superspin glass
transition. With a method initially developed for spin glasses, we investigate
the field dependence of the relaxations that take place after different aging
times. We extract the typical number of correlated spins involved in the aging
dynamics. This brings important insights into the dynamical correlation length
and its time growth. Our results, consistent with expressions obtained for spin
glasses, extend the generality of these behaviours to the class of superspin
glasses. Since the typical flipping time is much larger for superspins than for
atomic spins, our experiments probe a time regime much closer to that of
numerical simulations
- …