19,004 research outputs found

    Stabilization of aerodynamically excited turbomachinery with hydrodynamic journal bearings and supports

    Get PDF
    A method of analyzing the first mode stability and unbalance response of multimass flexible rotors is presented whereby the multimass system is modeled as an equivalent single mass modal model including the effects of rotor flexibility, general linearized hydrodynamic journal bearings, squeeze film bearing supports and rotor aerodynamic cross coupling. Expressions for optimum bearing and support damping are presented for both stability and unbalance response. The method is intended to be used as a preliminary design tool to quickly ascertain the effects of bearing and support changes on rotor-bearing system performance

    Design and application of squeeze film dampers for turbomachinery stabilization

    Get PDF
    The steady-state transient response of the squeeze film damper bearing was investigated. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived; the steady-state equations were used to determine the damper equivalent stiffness and damping coefficients. These coefficients are used to find the damper configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The effects of end seals and cavitated fluid film are included. The transient analysis of rotor-bearing systems was conducted by coupling the damping and rotor equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed

    Dynamic analysis of flexible rotor-bearing systems using a modal approach

    Get PDF
    The generalized dynamic equations of motion were obtained by the direct stiffness method for multimass flexible rotor-bearing systems. The direct solution of the equations of motion is illustrated on a simple 3-mass system. For complex rotor-bearing systems, the direct solution of the equations becomes very difficult. The transformation of the equations of motion into modal coordinates can greatly simplify the computation for the solution. The use of undamped and damped system mode shapes in the transformation are discussed. A set of undamped critical speed modes is used to transform the equations of motion into a set of coupled modal equations of motion. A rapid procedure for computing stability, steady state unbalance response, and transient response of the rotor-bearing system is presented. Examples of the application of this modal approach are presented. The dynamics of the system is further investigated with frequency spectrum analysis of the transient response

    Electric field formulation for thin film magnetization problems

    Full text link
    We derive a variational formulation for thin film magnetization problems in type-II superconductors written in terms of two variables, the electric field and the magnetization function. A numerical method, based on this formulation, makes it possible to accurately compute all variables of interest, including the electric field, for any value of the power in the power law current-voltage relation characterizing the superconducting material. For high power values we obtain a good approximation to the critical state model solution. Numerical simulation results are presented for simply and multiply connected films, and also for an inhomogeneous film.Comment: 15 p., submitte

    A magnetic damper for first mode vibration reduction in multimass flexible rotors

    Get PDF
    Many rotating machines such as compressors, turbines and pumps have long thin shafts with resulting vibration problems, and would benefit from additional damping near the center of the shaft. Magnetic dampers have the potential to be employed in these machines because they can operate in the working fluid environment unlike conventional bearings. An experimental test rig is described which was set up with a long thin shaft and several masses to represent a flexible shaft machine. An active magnetic damper was placed in three locations: near the midspan, near one end disk, and close to the bearing. With typical control parameter settings, the midspan location reduced the first mode vibration 82 percent, the disk location reduced it 75 percent and the bearing location attained a 74 percent reduction. Magnetic damper stiffness and damping values used to obtain these reductions were only a few percent of the bearing stiffness and damping values. A theoretical model of both the rotor and the damper was developed and compared to the measured results. The agreement was good

    Resolving environmental drivers of microbial community structure in Antarctic soils

    Get PDF
    Antarctic soils are extremely cold, dry, and oligotrophic, yet harbour surprisingly high bacterial diversity. The severity of environmental conditions has constrained the development of multi-trophic communities, and species richness and distribution is thought to be driven primarily by abiotic factors. Sites in northern and southern Victoria Land were sampled for bacterial community structure and soil physicochemical properties in conjunction with the US and New Zealand Latitudinal Gradient Project. Bacterial community structure was determined using a high-resolution molecular fingerprinting method for 80 soil samples from Taylor Valley and Cape Hallett sites which are separated by five degrees of latitude and have distinct soil chemistry. Taylor Valley is part of the McMurdo Dry Valleys, while Cape Hallett is the site of a penguin rookery and contains ornithogenic soils. The influence of soil moisture, pH, conductivity, ammonia, nitrate, total nitrogen and organic carbon on community structure was revealed using Spearman rank correlation, Mantel test, and principal components analysis. High spatial variability was detected in bacterial communities and community structure was correlated with soil moisture and pH. Both unique and shared bacterial community members were detected at Taylor Valley and Cape Hallett despite the considerable distance between the sites

    Cosmological Deformation of Lorentzian Spin Foam Models

    Full text link
    We study the quantum deformation of the Barrett-Crane Lorentzian spin foam model which is conjectured to be the discretization of Lorentzian Plebanski model with positive cosmological constant and includes therefore as a particular sector quantum gravity in de-Sitter space. This spin foam model is constructed using harmonic analysis on the quantum Lorentz group. The evaluation of simple spin networks are shown to be non commutative integrals over the quantum hyperboloid defined as a pile of fuzzy spheres. We show that the introduction of the cosmological constant removes all the infrared divergences: for any fixed triangulation, the integration over the area variables is finite for a large class of normalization of the amplitude of the edges and of the faces.Comment: 37 pages, 7 figures include

    Holography in the EPRL Model

    Full text link
    In this research announcement, we propose a new interpretation of the EPR quantization of the BC model using a functor we call the time functor, which is the first example of a CLa-ren functor. Under the hypothesis that the universe is in the Kodama state, we construct a holographic version of the model. Generalisations to other CLa-ren functors and connections to model category theory are considered.Comment: research announcement. Latex fil
    corecore