6,861 research outputs found

    A new technique for repair of mitral paravalvular leak?

    Get PDF

    Experimental data as evidence against the hypothesis on the earth's dust cloud

    Get PDF
    Cosmos and Explorer satellite data used to reject hypothesis of terrestrial meteoroid and dust cloud

    An approach to interrupted aortic arch associated with transposition of the great arteries

    Get PDF

    Novel superconducting phases of Tl-based compounds

    Get PDF
    Several new superconducting phases of the Tl-based compounds were prepared. Structural studies revealed cell lengths of 31.9 A and longer. Properties of Ce-containing compounds are also discussed

    Measurement of young's modulus and hardness of Al-50 wt % Sn alloy phases using nanoindentation

    Full text link
    The nanoindentation method was used to measure the Young's modulus and hardness of the phases of the alloy Al-50 wt % Sn: α-aluminum and eutectic. Samples are obtained in different ways, i.e., traditionally via the transition of the melt into a homogeneous structural state by heating to a certain temperature, followed by cooling using the cooling rate greater by the order than that of the traditional method and via the addition of 0.06 wt % Ti and 1 wt % Zr to the binary alloy. It has been found that the most significant effect of the Al-50 wt % Sn phases on the Young's modulus is the transition of the melt into a homogeneous structural state and the introduction of Zr into the melt. As part of the mathematical theory of elasticity, a numerical evaluation of the interfacial pressure that arises due to the difference between Young's modulus of α aluminum and eutectic has been performed. The calculation has showed that the extra pressure is nine times less for the alloy formed through the transition of the melt into a homogeneous structural state than for the alloy produced via a traditional way. © 2013 Pleiades Publishing, Ltd

    Thermal drag revisited: Boltzmann versus Kubo

    Full text link
    The effect of mutual drag between phonons and spin excitations on the thermal conductivity of a quantum spin system is discussed. We derive general expression for the drag component of the thermal current using both Boltzmann equation approach and Kubo linear-response formalism to leading order in the spin-phonon coupling. We demonstrate that aside from higher-order corrections which appear in the Kubo formalism both approaches yield identical results for the drag thermal conductivity. We discuss the range of applicability of our result and provide a generalization of our consideration to the cases of fermionic excitations and to anomalous forms of boson-phonon coupling. Several asymptotic regimes of our findings relevant to realistic situations are highlighted.Comment: 14 pages, 3 figures, published version, extended discussio

    Incentivizing Honesty among Competitors in Collaborative Learning and Optimization

    Full text link
    Collaborative learning techniques have the potential to enable training machine learning models that are superior to models trained on a single entity's data. However, in many cases, potential participants in such collaborative schemes are competitors on a downstream task, such as firms that each aim to attract customers by providing the best recommendations. This can incentivize dishonest updates that damage other participants' models, potentially undermining the benefits of collaboration. In this work, we formulate a game that models such interactions and study two learning tasks within this framework: single-round mean estimation and multi-round SGD on strongly-convex objectives. For a natural class of player actions, we show that rational clients are incentivized to strongly manipulate their updates, preventing learning. We then propose mechanisms that incentivize honest communication and ensure learning quality comparable to full cooperation. Lastly, we empirically demonstrate the effectiveness of our incentive scheme on a standard non-convex federated learning benchmark. Our work shows that explicitly modeling the incentives and actions of dishonest clients, rather than assuming them malicious, can enable strong robustness guarantees for collaborative learning.Comment: Accepted to NeurIPS 2023; 37 pages, 5 figure
    corecore