15 research outputs found

    The record of the magnetic storm on 15 May 1921 in Stará Ďala (present-day Hurbanovo) and its compliance with the global picture of this extreme event

    Get PDF
    This paper deals with the most intense magnetic storm of the 20th century, which took place on 13–15 May 1921. Part of this storm was observed in the magnetic declination and vertical intensity at Stará Ďala, currently known as Hurbanovo. However, the sensitivity of the magnetometer was not determined there in the years when the storm occurred. Here, we estimated the sensitivity scale values on the basis of data from before and after the studied event. The resulting digitized Stará Ďala’s data for 13–15 May 1921 are the main contribution of this work. The data were also put into the context of the records from other observatories. The overall picture of the geomagnetic field variations compiled from the observations by worldwide observatories, including Stará Ďala, suggests that the auroral oval got close to Stará Ďala and other European mid-latitude observatories in the morning hours on 15 May 1921.</p

    Antibodies Against EGF-Like Domains in \u3ci\u3eIxodes scapularis\u3c/i\u3e BM86 Orthologs Impact Tick Feeding and Survival of \u3ci\u3eBorrelia burgdorferi\u3c/i\u3e

    Get PDF
    Ixodes scapularis ticks transmit multiple pathogens, including Borrelia burgdorferi sensu stricto, and encode many proteins harboring epidermal growth factor (EGF)-like domains. We show that I. scapularis produces multiple orthologs for Bm86, a widely studied tick gut protein considered as a target of an anti-tick vaccine, herein termed as Is86. We show that Is86 antigens feature at least three identifiable regions harboring EGF-like domains (termed as EGF-1, EGF-2, and EGF-3) and are differentially upregulated during B. burgdorferi infection. Although the RNA interference-mediated knockdown of Is86 genes did not show any influences on tick engorgement or B. burgdorferi sensu stricto persistence, the immunization of murine hosts with specific recombinant EGF antigens marginally reduced spirochete loads in the skin, in addition to affecting tick blood meal engorgement and molting. However, given the borderline impact of EGF immunization on tick engorgement and pathogen survival in the vector, it is unlikely that these antigens, at least in their current forms, could be developed as potential vaccines. Further investigations of the biological significance of Is86 (and other tick antigens) would enrich our knowledge of the intricate biology of ticks, including their interactions with resident pathogens, and contribute to the development of anti-tick measures to combat tick-borne illnesses

    Babesia spp. in ticks and wildlife in different habitat types of Slovakia

    Get PDF
    Background: Babesiosis is an emerging and potentially zoonotic disease caused by tick-borne piroplasmids of the Babesia genus. New genetic variants of piroplasmids with unknown associations to vectors and hosts are recognized. Data on the occurrence of Babesia spp. in ticks and wildlife widen the knowledge on the geographical distribution and circulation of piroplasmids in natural foci. Questing and rodent-attached ticks, rodents, and birds were screened for the presence of Babesia-specific DNA using molecular methods. Spatial and temporal differences of Babesia spp. prevalence in ticks and rodents from two contrasting habitats of Slovakia with sympatric occurrence of Ixodes ricinus and Haemaphysalis concinna ticks and co-infections of Candidatus N. mikurensis and Anaplasma phagocytophilum were investigated. Results: Babesia spp. were detected in 1.5 % and 6.6 % of questing I. ricinus and H. concinna, respectively. Prevalence of Babesia-infected I. ricinus was higher in a natural than an urban/suburban habitat. Phylogenetic analysis showed that Babesia spp. from I. ricinus clustered with Babesia microti, Babesia venatorum, Babesia canis, Babesia capreoli/Babesia divergens, and Babesia odocoilei. Babesia spp. amplified from H. concinna segregated into two monophyletic clades, designated Babesia sp. 1 (Eurasia) and Babesia sp. 2 (Eurasia), each of which represents a yet undescribed novel species. The prevalence of infection in rodents (with Apodemus flavicollis and Myodes glareolus prevailing) with B. microti was 1.3 % in an urban/suburban and 4.2 % in a natural habitat. The majority of infected rodents (81.3 %) were positive for spleen and blood and the remaining for lungs and/or skin. Rodent-attached I. ricinus (accounting for 96.3 %) and H. concinna were infected with B. microti, B. venatorum, B. capreoli/B. divergens, Babesia sp. 1 (Eurasia), and Babesia sp. 2 (Eurasia). All B. microti and B. venatorum isolates were identical to known zoonotic strains from Europe. Less than 1.0 % of Babesia-positive ticks and rodents carried Candidatus N. mikurensis or A. phagocytophilum.Inst. de PatobiologíaFil: Hamsikova, Zuzana. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Kazimirová, Mária. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Harustiakova, Danka. Masaryk University. Faculty of Medicine and Faculty of Science, Institute of Biostatistics and Analyses; República ChecaFil: Mahrikova, Lenka. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Slovak, Mirko. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Berthova, Lenka. Slovak Academy of Sciences. Biomedical Research Center. Institute of Virology; EslovaquiaFil: Kocianova, Elena. Slovak Academy of Sciences. Biomedical Research Center. Institute of Virology; EslovaquiaFil: Schnittger, Leonhard. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    William Anderson Newman (November 13, 1927 – December 26, 2020) In memory of the Distinguished Invertebrate Zoologist, and Mentor, Colleague, and Friend

    No full text
    William Anderson Newman passed away on December 26th 2020 at his home in La Jolla, California, aged 93. Bill spent much of his academic life at Scripps Institution of Oceanography, and also had a long and enduring association with the California Academy of Sciences. A marine biologist with deep interests in palaeontology and geology, Bill made spectacular contributions to the study of barnacles, oncluding authoring 198 new taxa. But he is also remembered for his generous spirit, his mentorship and his support to emerging marine scientists
    corecore