35 research outputs found

    Particle production in quantum transport theories

    Full text link
    The particle production in the intermediate energy heavy ion collisions is discussed in the framework of the nonequilibrium Green's functions formalism. The evolution equations of the Green's functions for fermions allows for the discussion of the off-shell fermion propagator and of the large momentum component in the initial state. For the case of a homogeneous system numerical calculations of the meson production rate are performed and compared with the semiclassical production rate.Comment: 45 pages, figures included, uses FEYNMAN macro

    Quantum dynamics and thermalization for out-of-equilibrium phi^4-theory

    Full text link
    The quantum time evolution of \phi^4-field theory for a spatially homogeneous system in 2+1 space-time dimensions is investigated numerically for out-of-equilibrium initial conditions on the basis of the Kadanoff-Baym equations including the tadpole and sunset self-energies. Whereas the tadpole self-energy yields a dynamical mass, the sunset self-energy is responsible for dissipation and an equilibration of the system. In particular we address the dynamics of the spectral (`off-shell') distributions of the excited quantum modes and the different phases in the approach to equilibrium described by Kubo-Martin-Schwinger relations for thermal equilibrium states. The investigation explicitly demonstrates that the only translation invariant solutions representing the stationary fixed points of the coupled equation of motions are those of full thermal equilibrium. They agree with those extracted from the time integration of the Kadanoff-Baym equations in the long time limit. Furthermore, a detailed comparison of the full quantum dynamics to more approximate and simple schemes like that of a standard kinetic (on-shell) Boltzmann equation is performed. Our analysis shows that the consistent inclusion of the dynamical spectral function has a significant impact on relaxation phenomena. The different time scales, that are involved in the dynamical quantum evolution towards a complete thermalized state, are discussed in detail. We find that far off-shell 1 3 processes are responsible for chemical equilibration, which is missed in the Boltzmann limit. Finally, we address briefly the case of (bare) massless fields. For sufficiently large couplings λ\lambda we observe the onset of Bose condensation, where our scheme within symmetric \phi^4-theory breaks down.Comment: 77 pages, 26 figure

    How to combat cyanobacterial blooms: strategy toward preventive lake restoration and reactive control measures

    Full text link

    Allgemeine Grundlagen der Kolbenmaschinen

    No full text

    Conclusion

    No full text
    corecore