176 research outputs found
MG-CR-TYPE SPINEL PERIDOTITES IN THE WESTERN PART OF THE CENTRAL ASIAN OROGENIC BELT (ZHELTAU MASSIF, SOUTHERN KAZAKHSTAN): THE FIRST DATA ON P-T PATHS AND PROTOLITHS
Ultramafic and mafic lithologies, attributed to the orogenic terranes and formed under ultrahigh-pressure (UHP) and high-pressure (HP) conditions, have been intensively studied for the last decades. It is mainly related to a particular significance of these rocks for geodynamics, since they contain an important information on the fluid-rock interactions and element redistribution in the subduction-collision zones and could shed the light on the tectonic evolution of the studied region.Ultramafic and mafic lithologies, attributed to the orogenic terranes and formed under ultrahigh-pressure (UHP) and high-pressure (HP) conditions, have been intensively studied for the last decades. It is mainly related to a particular significance of these rocks for geodynamics, since they contain an important information on the fluid-rock interactions and element redistribution in the subduction-collision zones and could shed the light on the tectonic evolution of the studied region
CEM03 and LAQGSM03 - new modeling tools for nuclear applications
An improved version of the Cascade-Exciton Model (CEM) of nuclear reactions
realized in the code CEM2k and the Los Alamos version of the Quark-Gluon String
Model (LAQGSM) have been developed recently at LANL to describe reactions
induced by particles and nuclei for a number of applications. Our CEM2k and
LAQGSM merged with the GEM2 evaporation/fission code by Furihata have
predictive powers comparable to other modern codes and describe many reactions
better than other codes; therefore both our codes can be used as reliable event
generators in transport codes for applications. During the last year, we have
made a significant improvements to the intranuclear cascade parts of CEM2k and
LAQGSM, and have extended LAQGSM to describe photonuclear reactions at energies
to 10 GeV and higher. We have produced in this way improved versions of our
codes, CEM03.01 and LAQGSM03.01. We present a brief description of our codes
and show illustrative results obtained with CEM03.01 and LAQGSM03.01 for
different reactions compared with predictions by other models, as well as
examples of using our codes as modeling tools for nuclear applications.Comment: 12 pages, 10 figures, to be published in Journal of Physics:
Conference Series: Proc. Europhysics Conf. on New Trends in Nuclear Physics
Applications and Technologies (NPDC19), Pavia, Italy, September 5-9, 200
A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes
A nomenclature is described for restriction endonucleases, DNA methyltransferases, homing endonucleases and related genes and gene products. It provides explicit categories for the many different Type II enzymes now identified and provides a system for naming the putative genes found by sequence analysis of microbial genomes
Effectiveness of Disinsection and Deratization in Gorno-Altai High-Mountain Natural Plague Focus
Epidemic complications in the territory of Gorno-Altai high-mountain natural plague focus, associated with increase in numbers of carriers and vectors of the dangerous diseases, entailed strengthening of preventive element in the system of epidemiological surveillance. Objective of the study was to assess the efficiency of disinsection and deratization during anti-epidemic campaign. Materials and methods. Investigations were performed in 2014-2017 in the territory of Kosh-Agach district of the Republic of Altai, based on the archival and operational records from Altai Plague Control Station, Rospotrebnadzor Administration in the Republic of Altai, and our own data. “Interactive Map on Management of Health Promotion Measures in Gorno-Altai high-mountain natural plague focus” was used as an assessment tool. Results and conclusions. The most hard-hitting sections of preventive complex as regards plague are still disinsection and deratization. Application of advanced methods and means of control over numbers of carriers and vectors of the infection testify to their high anti-epidemic effectiveness. Insecticide and rodenticide treatments of encampments situated in epizootic areas, disinsection and deratization in major population centers in the territory of the focus allowed for the reduction in risk of population infection. Technical efficiency of the field disinsection amounted to 96.7 %, community deratization and disinsection varied from 91.6 to 100 %. Emergency insecticide and rodent treatments in epizootic areas alongside other measures provided for epidemiological welfare on plague
Nitazoxanide Stimulates Autophagy and Inhibits mTORC1 Signaling and Intracellular Proliferation of Mycobacterium tuberculosis
Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment
WNT/β-catenin signaling regulates mitochondrial activity to alter the oncogenic potential of melanoma in a PTEN-dependent manner
Aberrant regulation of WNT/β-catenin signaling has a crucial role in the onset and progression of cancers, where the effects are not always predictable depending on tumor context. In melanoma, for example, models of the disease predict differing effects of the WNT/β-catenin pathway on metastatic progression. Understanding the processes that underpin the highly context-dependent nature of WNT/β-catenin signaling in tumors is essential to achieve maximal therapeutic benefit from WNT inhibitory compounds. In this study, we have found that expression of the tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), alters the invasive potential of melanoma cells in response to WNT/β-catenin signaling, correlating with differing metabolic profiles. This alters the bioenergetic potential and mitochondrial activity of melanoma cells, triggered through regulation of pro-survival autophagy. Thus, WNT/β-catenin signaling is a regulator of catabolic processes in cancer cells, which varies depending on the metabolic requirements of tumors
MG-CR-TYPE SPINEL PERIDOTITES IN THE WESTERN PART OF THE CENTRAL ASIAN OROGENIC BELT (ZHELTAU MASSIF, SOUTHERN KAZAKHSTAN): THE FIRST DATA ON P-T PATHS AND PROTOLITHS
Ultramafic and mafic lithologies, attributed to the orogenic terranes and formed under ultrahigh-pressure (UHP) and high-pressure (HP) conditions, have been intensively studied for the last decades. It is mainly related to a particular significance of these rocks for geodynamics, since they contain an important information on the fluid-rock interactions and element redistribution in the subduction-collision zones and could shed the light on the tectonic evolution of the studied region
- …