63 research outputs found

    X-ray structure of <i>Fasciola hepatica</i> Sigma class glutathione transferase 1 reveals a disulfide bond to support stability in gastro-intestinal environment

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData delivery: The structure factors and the refined coordinates of the FhGST-S1 structures have been deposited with the Protein Data Bank and have the access codes 2WB9 and 2WDU.Sigma class GST (Prostaglandin D synthase), FhGST-S1, is present in the excretory–secretory products (ES) of the liver fluke parasite Fasciola hepatica as cargo of extracellular vesicles (EVs) released by the parasite. FhGST-S1 has a well characterised role in the modulation of the immune response; a key fluke intercession that allows for establishment and development within their hosts. We have resolved the three-dimensional structure of FhGST-S1 in complex with its co-factor glutathione, in complex with a glutathione-cysteine adduct, and in a glutathione disulfide complex in order to initiate a research pipeline to mechanistically understand how FhGST-S1 functions within the host environment and to rationally design selective inhibitors. The overall fold of FhGST-S1 shows high structural similarity to other Sigma class GSTs. However, a unique interdomain disulfide bond was found in the FhGST-S1 which could stabilise the structure within the host gastro-intestinal environment. The position of the two domains of the protein with respect to each other is seen to be crucial in the formation of the active site cleft of the enzyme. The interdomain disulfide bond raises the possibility of oxidative regulation of the active site of this GST protein.European Union FP6Biotechnology and Biological Sciences Research Council (BBSRC)NRN WalesUniversity of Exete

    In vitro biomarker discovery in the parasitic flatworm Fasciola hepatica for monitoring chemotherapeutic treatment

    Get PDF
    The parasitic flatworm Fasciola hepatica is a global food security risk. With no vaccines, the sustainability of triclabendazole (TCBZ) is threatened by emerging resistance. F. hepatica excretory/secretory (ES) products can be detected in host faeces and used to estimate TCBZ success and failure. However, there are no faecal based molecular diagnostics dedicated to assessing drug failure or resistance to TCBZ in the field. Utilising in vitro maintenance and sub-proteomic approaches two TCBZ stress ES protein response fingerprints were identified: markers of non-killing and lethal doses. This study provides candidate protein/peptide biomarkers to validate for detection of TCBZ failure and resistance

    Focusing nucleic acid-based molecular diagnostics and xenomonitoring approaches for human helminthiases amenable to preventive chemotherapy

    Get PDF
    The current mainstay for control of the four major helminth diseases in humans (lymphatic filariasis, onchocerciasis, soil-transmitted helminthiases and schistosomiasis) is with preventive chemotherapy by mass administration of key anthelminthics. Following the London Declaration on Neglected Tropical Diseases in 2012, a roadmap for the elimination and control of these helminthiases by 2020 has been devised. With expected declines in prevalence and intensity of these infections, there is urgent need for implementing more sensitive, high-throughput and cost-effective diagnostic tools. Currently available diagnostic approaches for surveying, monitoring and evaluating helminth control programmes are based on microscopical observation of eggs/larvae, and/or detection of antibodies or parasite antigens in stool, urine or blood; all relatively low-throughput and of limited sensitivity and specificity. Newly proposed approaches for helminthiases diagnosis include the nucleic acid-based methods of (multiplex) real-time polymerase chain reaction assays, loop-mediated isothermal amplification and recombinase polymerase amplification. However, as well as sensitivity/specificity evaluation, their comparison to current ‘gold standard’ diagnostics and future application in individual-/community-based diagnosis, or in xenomonitoring requires consideration of relative costs, agreement of standard methods and strategic interpretation of resulting data before control/elimination programmes might best utilize molecular diagnostics to inform decision making. We review current nucleic-acid-based molecular diagnostic methods and highlight the needs and future research required to refine these tools for monitoring and evaluation of control and elimination programmes for four major human helminthiases

    Intestinal schistosomiasis in Uganda at high altitude (>1400 m): malacological and epidemiological surveys on Mount Elgon and in Fort Portal crater lakes reveal extra preventive chemotherapy needs

    Get PDF
    Background Intestinal schistosomiasis is of public health importance in Uganda but communities living above 1400 m are not targeted for control as natural transmission is thought unlikely. To assess altitudinal boundaries and at-risk populations, conjoint malacological and epidemiological surveys were undertaken on Mount Elgon (1139 m–3937 m), in Fort Portal crater lakes and in the Rwenzori Mountains (1123 m–4050 m). Methods Seventy freshwater habitats [Mount Elgon (37), Fort Portal crater lakes (23), Rwenzori Mountains (8) and Lake Albert (2)] were inspected for Biomphalaria species. Water temperature, pH and conductivity were recorded. A parasitological examination of 756 schoolchildren [Mount Elgon (300), Fort Portal crater lakes (456)] by faecal microscopy of duplicate Kato-Katz smears from two consecutive stool samples was bolstered by antigen (urine-CCA dipstick) and antibody (SEA-ELISA) diagnostic assays. Results Biomphalaria spp. was found up to 1951 m on Mount Elgon and 1567 m in the Fort Portal crater lakes. Although no snail from Mount Elgon shed cercariae, molecular analysis judged 7.1% of snails sampled at altitudes above 1400 m as having DNA of Schistosoma mansoni; in Fort Portal crater lakes three snails shed schistosome cercariae. Prevalence of intestinal schistosomiasis as measured in schoolchildren by Kato-Katz (Mount Elgon = 5.3% v. Fort Portal crater lakes = 10.7%), CCA urine-dipsticks (18.3% v. 34.4%) and SEA-ELISA (42.3% v. 63.7%) showed negative associations with increasing altitude with some evidence of infection up to 2000 m. Conclusions Contrary to expectations, these surveys clearly show that natural transmission of intestinal schistosomiasis occurs above 1400 m, possibly extending up to 2000 m. Using spatial epidemiological predictions, this now places some extra six million people at-risk, denoting an expansion of preventive chemotherapy needs in Uganda

    Towards delineating functions within the fasciola secreted cathepsin L protease family by integrating in vivo based sub-proteomics and phylogenetics

    Get PDF
    BACKGROUND: Fasciola hepatica, along with Fasciola gigantica, is the causative agent of fasciolosis, a foodborne zoonotic disease affecting grazing animals and humans worldwide. Pathology is directly related to the release of parasite proteins that facilitate establishment within the host. The dominant components of these excretory-secretory (ES) products are also the most promising vaccine candidates, the cathepsin L (Cat L) protease family. METHODOLOGY/PRINCIPAL FINDINGS: The sub-proteome of Cat L proteases from adult F. hepatica ES products derived from in vitro culture and in vivo from ovine host bile were compared by 2-DE. The individual Cat L proteases were identified by tandem mass spectrometry with the support of an in-house translated liver fluke EST database. The study reveals plasticity within the CL1 clade of Cat L proteases; highlighted by the identification of a novel isoform and CL1 sub-clade, resulting in a new Cat L phylogenetic analysis including representatives from other adult Cat L phylogenetic clades. Additionally, for the first time, mass spectrometry was shown to be sufficiently sensitive to reveal single amino acid polymorphisms in a resolved 2-DE protein spot derived from pooled population samples. CONCLUSIONS/SIGNIFICANCE: We have investigated the sub-proteome at the population level of a vaccine target family using the Cat L proteases from F. hepatica as a case study. We have confirmed that F. hepatica exhibits more plasticity in the expression of the secreted CL1 clade of Cat L proteases at the protein level than previously realised. We recommend that superfamily based vaccine discovery programmes should screen parasite populations from different host populations and, if required, different host species via sub-proteomic assay in order to confirm the relative expression at the protein level prior to the vaccine development phase

    Proteomic analysis of embryonic Fasciola hepatica: Characterization and antigenic potential of a developmentally regulated heat shock protein

    Get PDF
    Fasciola hepatica is responsible for human disease and economic livestock loss on a global scale. We report the first post-genomic investigation of cellular proteins expressed by embryonic F. hepatica via two-dimensional electrophoresis, image analysis and tandem mass spectrometry. Antioxidant proteins and protein chaperones are prominently expressed by embryonic F. hepatica. Molecular differences between the egg and other characterized F. hepatica lifecycle stages were noted. Furthermore, proteins expressed within liver fluke eggs differ to those isolated from the well-characterized eggs of the human blood flatworm Schistosoma mansoni were revealed. Plasticity in expression of major proteins, particularly a prominently expressed 65 kDa protein cluster was seen between natural populations of embryonating F. hepatica eggs suggesting that liver fluke embryogenisis is a plastic process. Immunoblotting revealed that the abundant 65 kDa protein cluster is recognised by infection sera from three F. hepatica challenged host species. Mass spectrometry and BLAST analyses demonstrated that the 65 kDa antigen shows homology to egg antigens of other flatworm parasites, and is represented in a F. hepatica EST database constructed from adult fluke transcripts. EST clones encoding the egg antigen were re-sequenced, predicting two forms of the protein. Four clones predict a 312 aa polypeptide, three clones encode a putative 110 amino acid extension at the N-terminus which may be involved in protein secretion, although this extension was not expressed by natively extracted proteins. Consistent expression of alpha crystallin domains confirmed the protein to be a member of the alpha crystallin containing small heat shock protein (AC/sHSP) superfamily. AC/sHSPs are ubiquitous in nature, however, this is the first time a member of this protein superfamily has been described from F. hepatica. The antigenic AC/sHSP was named Fh-HSP35α based on predictions of molecular weight. Production of recombinant Fh-HSP35α reveals considerable mass discrepancy between native and recombinant proteins, although descriptions of other characterized flatworm AC/sHSPs, suggest that the native form is a dimer. Immunoblot analyses confirm that the recombinant protein is recognised by F. hepatica challenged hosts, but does not react with sera from non-infected animals. We discuss the potential of recombinant Fh-HSP35α as an egg-based diagnostic marker for liver fluke infection

    Exploring and Expanding the Fatty-Acid-Binding Protein Superfamily in Fasciola Species

    Get PDF
    The liver flukes Fasciola hepatica and F. gigantica infect livestock worldwide and threaten food security with climate change and problematic control measures spreading disease. Fascioliasis is also a food borne disease with up to 17 million humans infected. In the absence of vaccines, treatment depends on Triclabendazole (TCBZ) and over-use has led to widespread resistance, compromising future TCBZ control. Reductionist biology from many laboratories has predicted new therapeutic targets. To this end, the fatty acid binding protein (FABP) superfamily have proposed multi-functional roles, including functions intersecting vaccine and drug therapy, such as immune modulation and anthelmintic sequestration. Research is hindered by a lack of understanding of the full FABP superfamily complement. Although discovery studies predicted FABPs as promising vaccine candidates, it is unclear if uncharacterised FABPs are more relevant for vaccine formulations. We have coupled genome, transcriptome and EST data mining with proteomics and phylogenetics, to reveal a liver fluke FABP superfamily of 7 clades: previously identified clades I-III and newly identified clades IV-VII. All new clade FABPs were analysed using bioinformatics and cloned from both liver flukes. The extended FABP dataset will provide new study tools to research the role of FABPs in parasite biology and as therapy targets

    An outbreak of intestinal schistosomiasis, alongside increasing urogenital schistosomiasis prevalence, in primary school children on the shoreline of Lake Malawi, Mangochi District, Malawi

    Get PDF
    Background: Intestinal schistosomiasis was not considered endemic in Lake Malawi until 14 November 2017 when populations of Biomphalaria pfeifferi were first reported; in May 2018, emergence of intestinal schistosomiasis was confirmed. This emergence was in spite of ongoing control of urogenital schistosomiasis by preventive chemotherapy. Our current study sought to ascertain whether intestinal schistosomiasis is transitioning from emergence to outbreak, to judge if stepped-up control interventions are needed. Methods: During late-May 2019, three cross-sectional surveys of primary school children for schistosomiasis were conducted using a combination of rapid diagnostic tests, parasitological examinations and applied morbidity-markers; 1) schistosomiasis dynamics were assessed at Research Article IDOP Samama (n = 80) and Mchoka (n = 80) schools, where Schistosoma mansoni was first reported, 2) occurrence of S. mansoni was investigated at two non-sampled schools, Mangochi Orphan Education and Training (MOET) (n = 60) and Koche (n = 60) schools, where B. pfeifferi was nearby, and 3) rapid mapping of schistosomiasis, and B. pfeifferi, conducted across a further 8 shoreline schools (n = 240). After data collection, univariate analyses and Chi-square testing were performed, followed by binary logistic regression using generalized linear models, to investigate epidemiological associations. Results: In total, 520 children from 12 lakeshore primary schools were examined, mean prevalence of S. mansoni by ‘positive’ urine circulating cathodic antigen (CCA)-dipsticks was 31.5% (95% Confidence Interval (CI): 27.5–35.5). Upon comparisons of infection prevalence in May 2018, significant increases at Samama (Relative Risk (RR) = 1.7, 95% CI: 33 1.4–2.2) and Mchoka (RR = 2.7, 95% CI: 1.7–4.3) schools were observed. Intestinal schistosomiasis was confirmed at MOET (18.3%) and Koche (35.0%) schools, and in all rapid mapping schools, ranging from 10.0% to 56.7%. Several populations of B. pfeifferi were confirmed, with two new eastern shoreline locations noted. Mean prevalence of urogenital schistosomiasis was 24.0% (95% CI: 20.3–27.7). Conclusions: We notify that intestinal schistosomiasis, once considered non-endemic in Lake Malawi, is now transitioning from emergence to outbreak. Once control interventions can resume after coronavirus disease 2019 (COVID-19) suspensions, we recommend stepped-up preventive chemotherapy, with increased community-access to treatments, alongside renewed efforts in appropriate environmental control

    A systematic review with epidemiological update of male genital schistosomiasis (MGS): A call for integrated case management across the health system in sub-Saharan Africa.

    Get PDF
    Male genital schistosomiasis (MGS) is a gender specific manifestation of urogenital schistosomiasis (UGS) first described in 1911 by Madden in Egypt. Today, while affecting millions of men and boys worldwide, MGS receives insufficient attention, especially in sub-Saharan Africa (SSA). To provide a systematic review with an epidemiological update of MGS, we inspected both online and hardcopy resources in our appraisal. A total of 147 articles were eventually identified, only 31 articles were exclusively focused on MGS with original or targeted research. From these, we discuss pertinent clinico-pathological features of MGS, highlight the possible connection and interplay with HIV, and assess current diagnostic techniques alongside consideration of their use and application in SSA. To appreciate the burden of MGS more fully, especially in endemic areas, there is a clear need for better surveillance and longitudinal population research to investigate the best point-of-care (POC) diagnostic and its performance through time. Furthermore, to optimise individual case management, exploration of alternative praziquantel dosing regimens is needed for MGS in men with or without HIV co-infection
    • …
    corecore