6,054 research outputs found

    Phase-stabilized, 1.5-W frequency comb at 2.8 to 4.8 micron

    Full text link
    We present a high-power optical parametric oscillator-based frequency comb in the mid-infrared wavelength region using periodically poled lithium niobate. The system is synchronously pumped by a 10-W femtosecond Yb:fiber laser centered at 1.07 um and is singly resonant for the signal. The idler (signal) wavelength can be continuously tuned from 2.8 to 4.8 um (1.76 to 1.37 um) with a simultaneous bandwidth as high as 0.3 um and a maximum average idler output power of 1.50 W. We also demonstrate the performance of the stabilized comb by recording the heterodyne beat with a narrow-linewidth diode laser. This OPO is an ideal source for frequency comb spectroscopy in the mid-IR.Comment: 4 figure

    Carbon-ammonia pairs for adsorption refrigeration applications : ice making, air conditioning and heat pumping

    Get PDF
    A thermodynamic cycle model is used to select an optimum adsorbent-refrigerant pair in respect of a chosen figure of merit that could be the cooling production (MJ m(-3)), the heating production (MJ m(-3)) or the coefficient of performance (COP). This model is based mainly on the adsorption equilibrium equations of the adsorbent-refrigerant pair and heat flows. The simulation results of 26 various activated carbon-ammonia pairs for three cycles (single bed, two-bed and infinite number of beds) are presented at typical conditions for ice making, air conditioning and heat pumping applications. The driving temperature varies from 80 degrees C to 200 degrees C. The carbon absorbents investigated are mainly coconut shell and coal based types in multiple forms: monolithic, granular, compacted granular, fibre, compacted fibre, cloth, compacted cloth and powder. Considering a two-bed cycle, the best thermal performances based on power density are obtained with the monolithic carbon KOH-AC, with a driving temperature of 100 degrees C; the cooling production is about 66 MJ m(-3) (COP = 0.45) and 151 MJ m(-3) (COP = 0.61) for ice making and air conditioning respectively; the heating production is about 236 MJ m(-3) (COP = 1.50)

    Reinforced structural plastics

    Get PDF
    Reinforced polyimide structures are described. Reinforcing materials are impregnated with a suspension of polyimide prepolymer and bonded together by heat and pressure to form a cured, hard-reinforced, polyimide structure

    New rapid-curing, stable polyimide polymers with high-temperature strength and thermal stability

    Get PDF
    Additive-type polymerization reaction forms thermally stable polyimide polymers, thereby eliminating the volatile matter attendant with the condensation reaction. It is based on the utilization of reactive alicyclic rings positioned on the ends of polyimide prepolymers having relatively low molecular weights

    Floppy modes and the free energy: Rigidity and connectivity percolation on Bethe Lattices

    Full text link
    We show that negative of the number of floppy modes behaves as a free energy for both connectivity and rigidity percolation, and we illustrate this result using Bethe lattices. The rigidity transition on Bethe lattices is found to be first order at a bond concentration close to that predicted by Maxwell constraint counting. We calculate the probability of a bond being on the infinite cluster and also on the overconstrained part of the infinite cluster, and show how a specific heat can be defined as the second derivative of the free energy. We demonstrate that the Bethe lattice solution is equivalent to that of the random bond model, where points are joined randomly (with equal probability at all length scales) to have a given coordination, and then subsequently bonds are randomly removed.Comment: RevTeX 11 pages + epsfig embedded figures. Submitted to Phys. Rev.

    Charge-Focusing Readout of Time Projection Chambers

    Full text link
    Time projection chambers (TPCs) have found a wide range of applications in particle physics, nuclear physics, and homeland security. For TPCs with high-resolution readout, the readout electronics often dominate the price of the final detector. We have developed a novel method which could be used to build large-scale detectors while limiting the necessary readout area. By focusing the drift charge with static electric fields, we would allow a small area of electronics to be sensitive to particle detection for a much larger detector volume. The resulting cost reduction could be important in areas of research which demand large-scale detectors, including dark matter searches and detection of special nuclear material. We present simulations made using the software package Garfield of a focusing structure to be used with a prototype TPC with pixel readout. This design should enable significant focusing while retaining directional sensitivity to incoming particles. We also present first experimental results and compare them with simulation.Comment: 5 pages, 17 figures, Presented at IEEE Nuclear Science Symposium 201

    Clustering of matter in waves and currents

    Full text link
    The growth rate of small-scale density inhomogeneities (the entropy production rate) is given by the sum of the Lyapunov exponents in a random flow. We derive an analytic formula for the rate in a flow of weakly interacting waves and show that in most cases it is zero up to the fourth order in the wave amplitude. We then derive an analytic formula for the rate in a flow of potential waves and solenoidal currents. Estimates of the rate and the fractal dimension of the density distribution show that the interplay between waves and currents is a realistic mechanism for providing patchiness of pollutant distribution on the ocean surface.Comment: 4 pages, 1 figur

    Microplastics in the Antarctic marine system: An emerging area of research

    Get PDF
    It was thought that the Southern Ocean was relatively free of microplastic contamination; however, recent studies and citizen science projects in the Southern Ocean have reported microplastics in deep-sea sediments and surface waters. Here we reviewed available information on microplastics (including macroplastics as a source of microplastics) in the Southern Ocean. We estimated primary microplastic concentrations from personal care products and laundry, and identified potential sources and routes of transmission into the region. Estimates showed the levels of microplastic pollution released into the region from ships and scientific research stations were likely to be negligible at the scale of the Southern Ocean, but may be significant on a local scale. This was demonstrated by the detection of the first microplastics in shallow benthic sediments close to a number of research stations on King George Island. Furthermore, our predictions of primary microplastic concentrations from local sources were five orders of magnitude lower than levels reported in published sampling surveys (assuming an even dispersal at the ocean surface). Sea surface transfer from lower latitudes may contribute, at an as yet unknown level, to Southern Ocean plastic concentrations. Acknowledging the lack of data describing microplastic origins, concentrations, distribution and impacts in the Southern Ocean, we highlight the urgent need for research, and call for routine, standardised monitoring in the Antarctic marine system

    Phase Functions and Light Curves of Wide Separation Extrasolar Giant Planets

    Full text link
    We calculate self-consistent extrasolar giant planet (EGP) phase functions and light curves for orbital distances ranging from 0.2 AU to 15 AU. We explore the dependence on wavelength, cloud condensation, and Keplerian orbital elements. We find that the light curves of EGPs depend strongly on wavelength, the presence of clouds, and cloud particle sizes. Furthermore, the optical and infrared colors of most EGPs are phase-dependent, tending to be reddest at crescent phases in VRV-R and RIR-I. Assuming circular orbits, we find that at optical wavelengths most EGPs are 3 to 4 times brighter near full phase than near greatest elongation for highly-inclined (i.e., close to edge-on) orbits. Furthermore, we show that the planet/star flux ratios depend strongly on the Keplerian elements of the orbit, particularly inclination and eccentricity. Given a sufficiently eccentric orbit, an EGP's atmosphere may make periodic transitions from cloudy to cloud-free, an effect that may be reflected in the shape and magnitude of the planet's light curve. Such elliptical orbits also introduce an offset between the time of the planet's light curve maximum and the time of full planetary phase, and for some sets of orbital parameters, this light curve maximum can be a steeply increasing function of eccentricity. We investigate the detectability of EGPs by proposed space-based direct-imaging instruments.Comment: submitted to Astrophysical Journa
    corecore