1,377 research outputs found

    Unconventional magnetism in all-carbon nanofoam

    Get PDF
    We report production of nanostructured carbon foam by a high-repetition-rate, high-power laser ablation of glassy carbon in Ar atmosphere. A combination of characterization techniques revealed that the system contains both sp2 and sp3 bonded carbon atoms. The material is a novel form of carbon in which graphite-like sheets fill space at very low density due to strong hyperbolic curvature, as proposed for ?schwarzite?. The foam exhibits ferromagnetic-like behaviour up to 90 K, with a narrow hysteresis curve and a high saturation magnetization. Such magnetic properties are very unusual for a carbon allotrope. Detailed analysis excludes impurities as the origin of the magnetic signal. We postulate that localized unpaired spins occur because of topological and bonding defects associated with the sheet curvature, and that these spins are stabilized due to the steric protection offered by the convoluted sheets.Comment: 14 pages, including 2 tables and 7 figs. Submitted to Phys Rev B 10 September 200

    Bioethanol production from <em>Chara globularis</em> using yeast and yield improvement by optimization of conditions

    Get PDF
    The rising population, depletion of petroleum-based fossil fuel and atmospheric contaminations by combustion of fossil fuel have opened avenues for alternative, eco-friendly and renewable energy sources. Bioethanol is an alternative and renewable source that has drawn attention due environmental concerns and energy security with non-renewable sources. This study was aimed at determining the potential bioethanol producing freshwater flora that are abundantly available in the Northern Province of Sri Lanka using Saccharomyces cerevisiae and to optimize the fermentation conditions to enhance the ethanol yield from Chara globularis. Freshwater flora such as C. globularis, Cabomba caroliniana, Spirodela polyrhiza, Salvinia minima, Salvinia natans, Wolffia arrhiza and Wolffia globosa were hydrolysed with 1M sulfuric acid solution to determine the reducing sugar and bioethanol yields. C. globularis produced a higher amount of reducing sugar and bioethanol than other species tested. When C. globularis was pre-treated with 1 M acid solutions (sulfuric acid, nitric acid, and hydrochloric acid) and alkaline solutions (sodium hydroxide and potassium hydroxide), a higher reducing sugar and bioethanol yields were obtained with sulfuric acid. When bioethanol was produced from C. globularis using S. cerevisiae following three different hydrolysis methods viz., acid hydrolysis (1 M sulfuric acid), enzymatic hydrolysis (1% alphaamylase) and combination of chemical and enzymatic hydrolysis (1 M sulfuric acid and 1% alpha-amylase), the combination of chemical and enzymatic hydrolysis gave a higher yield, thus was selected. The conditions for fermentation of C. globularis substrate using S. cerevisiae were optimized sequentially by changing one factor at a time while keeping the other variables constant. After the optimization of fermentation time (24 hours), operating temperature (35 °C), rotation speed (200 rpm) and sulfuric acid concentration for combined pre-treatment (0.75 M) with an inoculum size of 100 g l-1, bioethanol yield was increased

    The Origin of the Mass--Metallicity Relation: Insights from 53,000 Star-Forming Galaxies in the SDSS

    Full text link
    We utilize Sloan Digital Sky Survey imaging and spectroscopy of ~53,000 star-forming galaxies at z~0.1 to study the relation between stellar mass and gas-phase metallicity. We derive gas-phase oxygen abundances and stellar masses using new techniques which make use of the latest stellar evolutionary synthesis and photoionization models. We find a tight (+/-0.1 dex) correlation between stellar mass and metallicity spanning over 3 orders of magnitude in stellar mass and a factor of 10 in metallicity. The relation is relatively steep from 10^{8.5} - 10^{10.5} M_sun, in good accord with known trends between luminosity and metallicity, but flattens above 10^{10.5} M_sun. We use indirect estimates of the gas mass based on the H-alpha luminosity to compare our data to predictions from simple closed box chemical evolution models. We show that metal loss is strongly anti-correlated with baryonic mass, with low mass dwarf galaxies being 5 times more metal-depleted than L* galaxies at z~0.1. Evidence for metal depletion is not confined to dwarf galaxies, but is found in galaxies with masses as high as 10^{10} M_sun. We interpret this as strong evidence both of the ubiquity of galactic winds and of their effectiveness in removing metals from galaxy potential wells.Comment: ApJ accepted, 15 pages, 9 figures, emulateapj.st

    The proton and deuteron F_2 structure function at low Q^2

    Get PDF
    Measurements of the proton and deuteron F2F_2 structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range 0.06<Q2<2.80.06 < Q^2 < 2.8 GeV2^2, and Bjorken xx values from 0.009 to 0.45, thus extending the knowledge of F2F_2 to low values of Q2Q^2 at low xx. Next-to-next-to-leading order calculations using recent parton distribution functions start to deviate from the data for Q2<2Q^2<2 GeV2^2 at the low and high xx-values. Down to the lowest value of Q2Q^2, the structure function is in good agreement with a parameterization of F2F_2 based on data that have been taken at much higher values of Q2Q^2 or much lower values of xx, and which is constrained by data at the photon point. The ratio of the deuteron and proton structure functions at low xx remains well described by a logarithmic dependence on Q2Q^2 at low Q2Q^2.Comment: 3 figures, submitted pape

    A precise extraction of the induced polarization in the 4He(e,e'p)3H reaction

    Full text link
    We measured with unprecedented precision the induced polarization Py in 4He(e,e'p)3H at Q^2 = 0.8 (GeV/c)^2 and 1.3 (GeV/c)^2. The induced polarization is indicative of reaction-mechanism effects beyond the impulse approximation. Our results are in agreement with a relativistic distorted-wave impulse approximation calculation but are over-estimated by a calculation with strong charge-exchange effects. Our data are used to constrain the strength of the spin independent charge-exchange term in the latter calculation.Comment: submitted to Physical Review Letter

    Polarization Transfer in the 4He(e,e'p)3H Reaction at Q^2 = 0.8 and 1.3 (GeV/c)^2

    Full text link
    Proton recoil polarization was measured in the quasielastic 4He(e,e'p)3H reaction at Q^2 = 0.8 (GeV/c)^2 and 1.3 (GeV/c)^2 with unprecedented precision. The polarization-transfer coefficients are found to differ from those of the 1H(e,e' p) reaction, contradicting a relativistic distorted-wave approximation, and favoring either the inclusion of medium-modified proton form factors predicted by the quark-meson coupling model or a spin-dependent charge-exchange final-state interaction. For the first time, the polarization-transfer ratio is studied as a function of the virtuality of the proton

    Longitudinal-Transverse Separations of Structure Functions at Low Q2Q^{2} for Hydrogen and Deuterium

    Get PDF
    We report on a study of the longitudinal to transverse cross section ratio, R=σL/σTR=\sigma_L/\sigma_T, at low values of xx and Q2Q^{2}, as determined from inclusive inelastic electron-hydrogen and electron-deuterium scattering data from Jefferson Lab Hall C spanning the four-momentum transfer range 0.06 <Q2<2.8 < Q^{2} < 2.8 GeV2^{2}. Even at the lowest values of Q2Q^{2}, RR remains nearly constant and does not disappear with decreasing Q2Q^{2}, as expected. We find a nearly identical behaviour for hydrogen and deuterium.Comment: 4 pages, 2 gigure

    Asymptotic normalization coefficients (nuclear vertex constants) for p+7Be8Bp+^7Be\to ^8B and the direct 7Be(p,γ)8B^7Be(p,\gamma)^8B astrophysical S-factors at solar energies

    Full text link
    A new analysis of the precise experimental astrophysical S-factors for the direct capture 7Be(p,γ)^7Be(p,\gamma) 8B^8B reaction [A.J.Junghans et al.Phys.Rev. C 68 (2003) 065803 and L.T. Baby et al. Phys.Rev. C 67 (2003) 065805] is carried out based on the modified two - body potential approach in which the direct astrophysical S-factor, S17(E) {\rm S_{17}(E)}, is expressed in terms of the asymptotic normalization constants for p+7Be8Bp+^7Be\to ^8B and two additional conditions are involved to verify the peripheral character of the reaction under consideration. The Woods-Saxon potential form is used for the bound (p+7Bep+^7Be)- state wave function and for the p7Bep^7Be- scattering wave function. New estimates are obtained for the ^{\glqq}indirectly measured\grqq values of the asymptotic normalization constants (the nuclear vertex constants) for the p+7Be8Bp+^7Be\to ^8B and S17(E)S_{17}(E) at E\le 115 keV, including EE=0. These values of S17(E)S_{17}(E) and asymptotic normalization constants have been used for getting information about the ^{\glqq}indirectly measured\grqq values of the ss wave average scattering length and the pp wave effective range parameters for p7Bep^7Be- scattering.Comment: 27 pages, 6 figure

    Measurements of electron-proton elastic cross sections for 0.4<Q2<5.5(GeV/c)20.4 < Q^2 < 5.5 (GeV/c)^2

    Full text link
    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 << Q2Q^2 << 5.5 (GeV/c)2(\rm GeV/c)^2. These measurements represent a significant contribution to the world's cross section data set in the Q2Q^2 range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.Comment: 17 pages, 18 figures; text added, some figures replace
    corecore