1,426 research outputs found

    Glauber Critical Dynamics: Exact Solution of the Kinetic Gaussian Model

    Full text link
    In this paper, we have exactly solved Glauber critical dynamics of the Gaussian model on three dimensions. Of course, it is much easy to apply to low dimensional case. The key steps are that we generalize the spin change mechanism from Glauber's single-spin flipping to single-spin transition and give a normalized version of the transition probability . We have also investigated the dynamical critical exponent and found surprisingly that the dynamical critical exponent is highly universal which refer to that for one- two- and three-dimensions they have same value independent of spatial dimensionality in contrast to static (equilibrium) critical exponents.Comment: 9 page

    PND71 Predictors of Treatment Class Choice in Parkinson's Disease

    Get PDF

    A very fast inference algorithm for finite-dimensional spin glasses: Belief Propagation on the dual lattice

    Full text link
    Starting from a Cluster Variational Method, and inspired by the correctness of the paramagnetic Ansatz (at high temperatures in general, and at any temperature in the 2D Edwards-Anderson model) we propose a novel message passing algorithm --- the Dual algorithm --- to estimate the marginal probabilities of spin glasses on finite dimensional lattices. We show that in a wide range of temperatures our algorithm compares very well with Monte Carlo simulations, with the Double Loop algorithm and with exact calculation of the ground state of 2D systems with bimodal and Gaussian interactions. Moreover it is usually 100 times faster than other provably convergent methods, as the Double Loop algorithm.Comment: 23 pages, 12 figures. v2: improved introductio

    Solvable Kinetic Gaussian Model in External Field

    Full text link
    In this paper, the single-spin transition dynamics is used to investigate the kinetic Gaussian model in a periodic external field. We first derive the fundamental dynamic equations, and then treat an isotropic d-dimensional hypercubic lattice Gaussian spin system with Fourier's transformation method. We obtain exactly the local magnetization and the equal-time pair correlation function. The critical characteristics of the dynamical, the complex susceptibility, and the dynamical response are discussed. The results show that the time evolution of the dynamical quantities and the dynamical responses of the system strongly depend on the frequency and the wave vector of the external field.Comment: 11 page

    Scattering phases for meson and baryon resonances on general moving-frame lattices

    Get PDF
    A proposal by L\"uscher enables one to compute the scattering phases of elastic two-body systems from the energy levels of the lattice Hamiltonian in a finite volume. In this work we generalize the formalism to S--, P-- and D--wave meson and baryon resonances, and general total momenta. Employing nonvanishing momenta has several advantages, among them making a wider range of energy levels accessible on a single lattice volume and shifting the level crossing to smaller values of mπLm_\pi L.Comment: 41 pages, 3 figures. References added, minor edits to text. Version to be published in Phys. Rev.

    Strychnine Intoxication: A Case Report

    Get PDF
    Strychnine acts as an inhibitor of post-synaptic neuronal inhibition and intoxication leads to distinct clinical manifestations which may culminate in death. Since its commercialization is prohibited in most countries, cases of strychnine intoxication are now rare. We present a case of an elderly patient who voluntarily ingested a white powder thought to be strychnine. He developed myoclonus, startle response, and episodes of generalized muscle contractions accompanied by respiratory arrest in one occasion. Diazepam, valproic acid and supportive treatments were able to control manifestations, however the patient died after 2 days. Our aim is to alert clinicians that, despite its rarity, strychnine intoxication may still be seen in emergency departments, and clinical outcome can be influenced by rapid recognition and timely institution of adequate treatment

    Metastable states in the Blume-Emery-Griffiths spin glass model

    Full text link
    We study the Blume-Emery-Griffiths spin glass model in presence of an attractive coupling between real replicas, and evaluate the effective potential as a function of the density overlap. We find that there is a region, above the first order transition of the model, where metastable states with a large density overlap exist. The line where these metastable states appear should correspond to a purely dynamical transition, with a breaking of ergodicity. Differently from what happens in p-spin glasses, in this model the dynamical transition would not be the precursor of a 1-step RSB transition, but (probably) of a full RSB transition.Comment: RevTeX, 4 pages, 2 fig

    Replica Cluster Variational Method: the Replica Symmetric solution for the 2D random bond Ising model

    Full text link
    We present and solve the Replica Symmetric equations in the context of the Replica Cluster Variational Method for the 2D random bond Ising model (including the 2D Edwards-Anderson spin glass model). First we solve a linearized version of these equations to obtain the phase diagrams of the model on the square and triangular lattices. In both cases the spin-glass transition temperatures and the tricritical point estimations improve largely over the Bethe predictions. Moreover, we show that this phase diagram is consistent with the behavior of inference algorithms on single instances of the problem. Finally, we present a method to consistently find approximate solutions to the equations in the glassy phase. The method is applied to the triangular lattice down to T=0, also in the presence of an external field.Comment: 22 pages, 11 figure

    Block-Diagonalization and f-electron Effects in Tight-Binding Theory

    Full text link
    We extend a tight-binding total energy method to include f-electrons, and apply it to the study of the structural and elastic properties of a range of elements from Be to U. We find that the tight-binding parameters are as accurate and transferable for f-electron systems as they are for d-electron systems. In both cases we have found it essential to take great care in constraining the fitting procedure by using a block-diagonalization procedure, which we describe in detail.Comment: 9 pages, 6 figure
    • …
    corecore