6,547 research outputs found

    Interaction-Induced Spin Polarization in Quantum Dots

    Get PDF
    The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.Comment: 4 pages, 5 figure

    Noise enhancement due to quantum coherence in coupled quantum dots

    Get PDF
    We show that the intriguing observation of noise enhancement in the charge transport through two vertically coupled quantum dots can be explained by the interplay of quantum coherence and strong Coulomb blockade. We demonstrate that this novel mechanism for super-Poissonian charge transfer is very sensitive to decoherence caused by electron-phonon scattering as inferred from the measured temperature dependence.Comment: 4 pages, 3 figures, corrected version (Figs.2 and 3

    Mobilities and Scattering Times in Decoupled Graphene Monolayers

    Get PDF
    Folded single layer graphene forms a system of two decoupled monolayers being only a few Angstroms apart. Using magnetotransport measurements we investigate the electronic properties of the two layers conducting in parallel. We show a method to obtain the mobilities for the individual layers despite them being jointly contacted. The mobilities in the upper layer are significantly larger than in the bottom one indicating weaker substrate influence. This is confirmed by larger transport and quantum scattering times in the top layer. Analyzing the temperature dependence of the Shubnikov-de Haas oscillations effective masses and corresponding Fermi velocities are obtained yielding reduced values down to 66 percent in comparison to monolayers.Comment: 4 pages, 5 figure

    Measurement of the energy dependence of phase relaxation by single electron tunneling

    Full text link
    Single electron tunneling through a single impurity level is used to probe the fluctuations of the local density of states in the emitter. The energy dependence of quasi-particle relaxation in the emitter can be extracted from the damping of the fluctuations of the local density of states (LDOS). At larger magnetic fields Zeeman splitting is observed.Comment: 2 pages, 4 figures; 25th International Conference on the Physics of Semiconductors, Osaka, Japan, September 17-22, 200

    Quantitative validation of PEDFLOW for description of unidirectional pedestrian dynamics

    Get PDF
    The results of a systematic quantitative validation of PEDFLOW based on the experimental data from FZJ are presented. Unidirectional flow experiments, totaling 28 different combinations with varying entry, corridor and exit widths, were considered. The condition imposed on PEDFLOW was that all the cases should be run with the same input parameters. The exit times and fundamental diagrams for the measuring region were evaluated and compared. This validation process led to modifications and enhancements of the model underlying PEDFLOW. The preliminary conclusions indicate that the results agree well for densities smaller than 3 m-2 and a good agreement is observed even at high densities for the corridors with bcor = 2.4 m, and bcor = 3.0 m. For densities between 1 and 2 m-2 the specific flow and velocities are underpredicted by PEDFLOW.Comment: 6 pages, 3 figures, 1 Table, conference PED201

    Non-Markovian Dynamics of Charge Carriers in Quantum Dots

    Full text link
    We have investigated the dynamics of bound particles in multilevel current-carrying quantum dots. We look specifically in the regime of resonant tunnelling transport, where several channels are available for transport. Through a non-Markovian formalism under the Born approximation, we investigate the real-time evolution of the confined particles including transport-induced decoherence and relaxation. In the case of a coherent superposition between states with different particle number, we find that a Fock-space coherence may be preserved even in the presence of tunneling into and out of the dot. Real-time results are presented for various asymmetries of tunneling rates into different orbitals.Comment: 9 pages, 3 figures, International Workshop on Physics-Based Mathematical Models for Low-Dimensional Semiconductor Nanostructures. BIRS, November 18-23, 200

    Tunable graphene system with two decoupled monolayers

    Get PDF
    The use of two truly two-dimensional gapless semiconductors, monolayer and bilayer graphene, as current-carrying components in field-effect transistors (FET) gives access to new types of nanoelectronic devices. Here, we report on the development of graphene-based FETs containing two decoupled graphene monolayers manufactured from a single one folded during the exfoliation process. The transport characteristics of these newly-developed devices differ markedly from those manufactured from a single-crystal bilayer. By analyzing Shubnikov-de Haas oscillations, we demonstrate the possibility to independently control the carrier densities in both layers using top and bottom gates, despite there being only a nanometer scale separation between them

    Signatures of spin in the n=1/3 Fractional Quantum Hall Effect

    Get PDF
    The activation gap Delta of the fractional quantum Hall state at constant filling n =1/3 is measured in wide range of perpendicular magnetic field B. Despite the full spin polarization of the incompressible ground state, we observe a sharp crossover between a low-field linear dependence of Delta on B associated to spin texture excitations and a Coulomb-like behavior at large B. From the global gap-reduction we get information about the mobility edges in the fractional quantum Hall regime.Comment: 4 pages, 3 figure
    corecore