400 research outputs found
Submillimeter local oscillators for heterodyne spectroscopy
The major technological innovations in continuous wave (CW) submillimeter sources which are specifically suitable for application as local oscillators in heterodyne systems are reviewed. A description of the various sources is given which underscores the general principles and operating features for each type of device. Particular emphasis is placed on CW optically pumped lasers, which have had a dramatic impact as widely available sources of narrow linewidth coherent radiation. The state-of-the-art is summarized for these lasers and performance data are presented for several local oscillator packages. Optically pumped lasers are then compared and contrasted with other competing sources such as backward wave oscillators, IMPATT diodes, and Josephson junctions. By comparing their advantages and limitations for use as local oscillators, the potential applications of these different sources are projected. The prospects for increased tunability, reliability, and scalability are briefly considered, and several novel techniques for generating partially tunable radiation using Schottky diode mixers or CW Raman lasers are highlighted
Particle production in quantum transport theories
The particle production in the intermediate energy heavy ion collisions is
discussed in the framework of the nonequilibrium Green's functions formalism.
The evolution equations of the Green's functions for fermions allows for the
discussion of the off-shell fermion propagator and of the large momentum
component in the initial state. For the case of a homogeneous system numerical
calculations of the meson production rate are performed and compared with the
semiclassical production rate.Comment: 45 pages, figures included, uses FEYNMAN macro
Disappearance of Elliptic Flow: A New Probe for the Nuclear Equation of State
Using a relativistic hadron transport model, we investigate the utility of
the elliptic flow excitation function as a probe for the stiffness of nuclear
matter and for the onset of a possible quark-gluon-plasma (QGP)
phase-transition at AGS energies 1 < E_Beam < 11 AGeV. The excitation function
shows a strong dependence on the nuclear equation of state, and exhibits
characteristic signatures which could signal the onset of a phase transition to
the QGP.Comment: 11 pages, 4 Postscript figures, uses epsf.sty, submitted to Physical
Review Letter
Optimized Discretization of Sources Imaged in Heavy-Ion Reactions
We develop the new method of optimized discretization for imaging the
relative source from two particle correlation functions. In this method, the
source resolution depends on the relative particle separation and is adjusted
to available data and their errors. We test the method by restoring assumed pp
sources and then apply the method to pp and IMF data. In reactions below 100
MeV/nucleon, significant portions of the sources extend to large distances (r >
20 fm). The results from the imaging show the inadequacy of common Gaussian
source-parametrizations. We establish a simple relation between the height of
the pp correlation function and the source value at short distances, and
between the height and the proton freeze-out phase-space density.Comment: 36 pages (inc. 9 figures), RevTeX, uses epsf.sty. Submitted to Phys.
Rev.
Nucleon-nucleon cross sections in neutron-rich matter and isospin transport in heavy-ion reactions at intermediate energies
Nucleon-nucleon (NN) cross sections are evaluated in neutron-rich matter
using a scaling model according to nucleon effective masses. It is found that
the in-medium NN cross sections are not only reduced but also have a different
isospin dependence compared with the free-space ones. Because of the
neutron-proton effective mass splitting the difference between nn and pp
scattering cross sections increases with the increasing isospin asymmetry of
the medium. Within the transport model IBUU04, the in-medium NN cross sections
are found to influence significantly the isospin transport in heavy-ion
reactions. With the in-medium NN cross sections, a symmetry energy of
was found most acceptable
compared with both the MSU isospin diffusion data and the presently acceptable
neutron-skin thickness in Pb. The isospin dependent part of isobaric nuclear incompressibility was further narrowed down to
MeV. The possibility of determining simultaneously the in-medium
NN cross sections and the symmetry energy was also studied. The proton
transverse flow, or even better the combined transverse flow of neutrons and
protons, can be used as a probe of the in-medium NN cross sections without much
hindrance from the uncertainties of the symmetry energy.Comment: 32 pages including 14 figures. Submitted to Phys. Rev.
Nuclear Isospin Diffusivity
The isospin diffusion and other irreversible phenomena are discussed for a
two-component nuclear Fermi system. The set of Boltzmann transport equations,
such as employed for reactions, are linearized, for weak deviations of a system
from uniformity, in order to arrive at nonreversible fluxes linear in the
nonuniformities. Besides the diffusion driven by a concentration gradient, also
the diffusion driven by temperature and pressure gradients is considered.
Diffusivity, conductivity, heat conduction and shear viscosity coefficients are
formally expressed in terms of the responses of distribution functions to the
nonuniformities. The linearized Boltzmann-equation set is solved, under the
approximation of constant form-factors in the distribution-function responses,
to find concrete expressions for the transport coefficients in terms of
weighted collision integrals. The coefficients are calculated numerically for
nuclear matter, using experimental nucleon-nucleon cross sections. The isospin
diffusivity is inversely proportional to the neutron-proton cross section and
is also sensitive to the symmetry energy. At low temperatures in symmetric
matter, the diffusivity is directly proportional to the symmetry energy.Comment: 35 pages, 1 table, 5 figures, accepted by PRC, (v3) changes in
response to the referee's comments, discussion for isospin diffusion process
in heavy-ion reactions, fig. 5 shows results from a two different isospin
depndent uclear equation of state, and a new reference adde
Medium corrections in the formation of light charged particles in heavy ion reactions
Within a microscopic statistical description of heavy ion collisions, we
investigate the effect of the medium on the formation of light clusters. The
dominant medium effects are self-energy corrections and Pauli blocking that
produce the Mott effect for composite particles and enhanced reaction rates in
the collision integrals. Microscopic description of composites in the medium
follows the Dyson equation approach combined with the cluster mean-field
expansion. The resulting effective few-body problem is solved within a properly
modified Alt-Grassberger-Sandhas formalism. The results are incorporated in a
Boltzmann-Uehling-Uhlenbeck simulation for heavy ion collisions. The number and
spectra of light charged particles emerging from a heavy ion collision changes
in a significant manner in effect of the medium modification of production and
absorption processes.Comment: 16 pages, 6 figure
The effect of finite-range interactions in classical transport theory
The effect of scattering with non-zero impact parameters between consituents
in relativistic heavy ion collisions is investigated. In solving the
relativistic Boltzmann equation, the characteristic range of the collision
kernel is varied from approximately one fm to zero while leaving the mean-free
path unchanged. Modifying this range is shown to significantly affect spectra
and flow observables. The finite range is shown to provide effective
viscosities, shear, bulk viscosity and heat conductivity, with the viscous
coefficients being proportional to the square of the interaction range
Delays Associated with Elementary Processes in Nuclear Reaction Simulations
Scatterings, particularly those involving resonances, and other elementary
processes do not happen instantaneously. In the context of semiclassical
nuclear reaction simulations, we consider delays associated with an interaction
for incident quantum wave-packets. As a consequence, we express delays
associated with elementary processes in terms of elements of the scattering
matrix and phase shifts for elastic scattering. We show that, to within the
second order in density, the simulation must account for delays in scattering
consistently with the mean field in order to properly model thermodynamic
properties such as pressure and free-energy density. The delays associated with
nucleon-nucleon and pion-nucleon scattering in free space are analysed with
their nontrivial energy dependence. Finally, an example of s-channel scattering
of massless partons is studied, and scattering schemes in nuclear reaction
simulations are investigated in the context of scattering delays.Comment: 45 pages, 5 uuencoded Postscript figure
- …